Math, asked by vedantpansare2005, 9 months ago

plz answer it guys l need help​

Attachments:

Answers

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 i \: \sf{ \: is \: a \: complex \: number \: such \: that \: \: }

 {i}^{2}  =  - 1

TO DETERMINE

Express

 \displaystyle \:  { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}^{2}

 \sf{Which \:  is \:  of  \: the \:  form  \: a + ib}

EVALUATION

Here

 \displaystyle \:  { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}

 =  \displaystyle \:  \frac{i}{i}  { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}

 =  \displaystyle \:  i { \bigg( \:  \frac{1 + i}{i -  {i}^{2} }  \bigg)}

 =  \displaystyle \:  i { \bigg( \:  \frac{1 + i}{i + 1  }  \bigg)}

 =  \displaystyle \:  i { \bigg( \:  \frac{1 + i}{1 + i  }  \bigg)}

 = i

Hence

 \displaystyle \:  { \bigg( \:  \frac{1 + i}{1 - i}  \bigg)}^{2}

=  {i}^{2}

 =  - 1

 =  -  1+ 0i

 \sf{Which \:  is \:  of  \: the \:  form  \: a + ib}

 \sf{ \: Where \:  \:  a = - 1 \:  \:  and \:  \:  b = 0 \: }

Similar questions