Math, asked by vedantpansare2005, 7 months ago

plz answer it guys l need help​

Attachments:

Answers

Answered by pulakmath007
25

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

A complex number is said to be real number if

Imaginary part of the number = 0

2.

 {(a   +  b)}^{3}  =  {a}^{3}  + 3 {a}^{2}b  + 3a {b}^{2}  +  {b}^{3}

3.

 {i}^{2}  =  - 1

TO PROVE

 \sf{ {( - 1 +  \sqrt{3} i)}^{3}  \: is \: a \: real \: number \: }

PROOF

{( - 1 +  \sqrt{3} i)}^{3}

 =  {( - 1)}^{3}  + 3 {( - 1)}^{2} \sqrt{3}i   + 3( - 1) {( \sqrt{3}i) }^{2}  +  {( \sqrt{3}i) }^{3}

 =  - 1 + 3\sqrt{3}i   - 3 \times 3 \times  {i}^{2}  + 3 \sqrt{3}  {i}^{3}

 =  - 1 + 3\sqrt{3}i   + 9 - 3 \sqrt{3}  {i}

 = 8

Which is purely real number

Answered by lavender536
0

Answer:

(−1+

3

i)

3

= {( - 1)}^{3} + 3 {( - 1)}^{2} \sqrt{3}i + 3( - 1) {( \sqrt{3}i) }^{2} + {( \sqrt{3}i) }^{3}=(−1)

3

+3(−1)

2

3

i+3(−1)(

3

i)

2

+(

3

i)

3

= - 1 + 3\sqrt{3}i - 3 \times 3 \times {i}^{2} + 3 \sqrt{3} {i}^{3}=−1+3

3

i−3×3×i

2

+3

3

i

3

= - 1 + 3\sqrt{3}i + 9 - 3 \sqrt{3} {i}=−1+3

3

i+9−3

3

i

= 8=8

Which is purely real number

Similar questions