Math, asked by vedantpansare2005, 8 months ago

plz answer it guys l need help​

Attachments:

Answers

Answered by sk181231
0

Answer:

-3(1-i} is the answer

hope it helped

Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

If Z is a complex number then

 |z|  =  \sqrt{ {x}^{2} +  {y}^{2}  }

2.

If Z is in 2nd Quadrant then

  \displaystyle \: \sf{ \:  \theta = amp \: z  \: } = \pi -   \displaystyle \: \sf{ \:   { \tan}^{ - 1}   \:  \bigg| \frac{y}{x} \bigg|   }

EVALUATION

 \sf{ \:z =   - 3(1 - i) \: }

 =  \sf{ \:  - 3  + 3 i \: }

Which represents the point ( - 3, 3 ) on complex plane

Which is on 2nd Quadrant

 \sf{ \: Comparing \: with \: z = x + iy \:  we \: get\: }

 \sf{ \:  \:  x =  - 3 \:  \: and \:  y = 3 \:  \: }

So

 \sf{ \:  |z| =  \sqrt{ {x}^{2} +  {y}^{2}  }  \:  =  \sqrt{9 + 9} =  \sqrt{18}  = 3 \sqrt{2}  }

Again

  \displaystyle \: \sf{ \:  \theta = amp \: z  \: }

  =  \displaystyle \: \sf{ \:  \pi -  { \tan}^{ - 1}   \:  \bigg| \frac{y}{x} \bigg|   }

  =\pi -   \displaystyle \: \sf{ \:   { \tan}^{ - 1}   \: \frac{3}{3}  }

  =\pi -   \displaystyle \: \sf{ \:    \frac{\pi}{4}  }

  =\displaystyle \: \sf{ \:    \frac{3\pi}{4}  }

RESULT

 \sf{ \:modulous \: of \: z \:  = 3 \sqrt{2}   \: }

  \displaystyle \: \sf{ \: amp \: z =  \frac{3\pi}{4}  \: }

Similar questions