Math, asked by vedantpansare2005, 7 months ago

plz answer it guys l need help​

Attachments:

Answers

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

A number is said to be purely real if

Imaginary part of the number = 0

2.

The general Solution of

 \sin \theta = 0 \:  \: is

 \theta \:  = n \pi \:  \: where \:  \: n \in \mathbb{Z}

TO DETERMINE

 \sf{ \: The \:  real  \: values \:  of  \:  \theta  \: for \: which \:  \: \: }

 \displaystyle \:  \frac{4 + 3i \sin \theta}{1 - 2i \sin \theta}  \:  \: is \: purely \: real \:

EVALUATION

 \displaystyle \:  \frac{4 + 3i \sin \theta}{1 - 2i \sin \theta}

 =  \displaystyle \:  \frac{4( \: 1 - 2i \sin \theta \: ) + 11 \: i \sin \theta}{1 - 2i \sin \theta}

 =  \displaystyle \: 4 +  \frac{11 \: i \sin \theta}{1 - 2i \sin \theta}

Which is purely real when

 \sin \theta = 0 \:

  \implies \: \theta \:  = n \pi \:  \: where \:  \: n \in \mathbb{Z}

 \sf{ \:Which \:  is  \: the \:  required \:  values  \: of   \:  \theta \:  \: }

Answered by sk181231
0

Answer:

\huge{\underline{\mathtt{\red{❥A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

FORMULA TO BE IMPLEMENTED

1.

A number is said to be purely real if

Imaginary part of the number = 0

2.

The general Solution of

\sin \theta = 0 \: \: issinθ=0is

\theta \: = n \pi \: \: where \: \: n \in \mathbb{Z}θ=nπwheren∈Z

TO DETERMINE

\sf{ \: The \: real \: values \: of \: \theta \: for \: which \: \: \: }Therealvaluesofθforwhich

\displaystyle \: \frac{4 + 3i \sin \theta}{1 - 2i \sin \theta} \: \: is \: purely \: real \:

1−2isinθ

4+3isinθ

ispurelyreal

EVALUATION

\displaystyle \: \frac{4 + 3i \sin \theta}{1 - 2i \sin \theta}

1−2isinθ

4+3isinθ

= \displaystyle \: \frac{4( \: 1 - 2i \sin \theta \: ) + 11 \: i \sin \theta}{1 - 2i \sin \theta}=

1−2isinθ

4(1−2isinθ)+11isinθ

= \displaystyle \: 4 + \frac{11 \: i \sin \theta}{1 - 2i \sin \theta}=4+

1−2isinθ

11isinθ

Which is purely real when

\sin \theta = 0 \:sinθ=0

\implies \: \theta \: = n \pi \: \: where \: \: n \in \mathbb{Z}⟹θ=nπwheren∈Z

\sf{ \:Which \: is \: the \: required \: values \: of \: \theta \: \: }Whichistherequiredvaluesofθ

Similar questions