plz answer it guys l need help
Answers
FORMULA TO BE IMPLEMENTED
1.
A number is said to be purely real if
Imaginary part of the number = 0
2.
The general Solution of
TO DETERMINE
EVALUATION
Which is purely real when
Answer:
FORMULA TO BE IMPLEMENTED
1.
A number is said to be purely real if
Imaginary part of the number = 0
2.
The general Solution of
\sin \theta = 0 \: \: issinθ=0is
\theta \: = n \pi \: \: where \: \: n \in \mathbb{Z}θ=nπwheren∈Z
TO DETERMINE
\sf{ \: The \: real \: values \: of \: \theta \: for \: which \: \: \: }Therealvaluesofθforwhich
\displaystyle \: \frac{4 + 3i \sin \theta}{1 - 2i \sin \theta} \: \: is \: purely \: real \:
1−2isinθ
4+3isinθ
ispurelyreal
EVALUATION
\displaystyle \: \frac{4 + 3i \sin \theta}{1 - 2i \sin \theta}
1−2isinθ
4+3isinθ
= \displaystyle \: \frac{4( \: 1 - 2i \sin \theta \: ) + 11 \: i \sin \theta}{1 - 2i \sin \theta}=
1−2isinθ
4(1−2isinθ)+11isinθ
= \displaystyle \: 4 + \frac{11 \: i \sin \theta}{1 - 2i \sin \theta}=4+
1−2isinθ
11isinθ
Which is purely real when
\sin \theta = 0 \:sinθ=0
\implies \: \theta \: = n \pi \: \: where \: \: n \in \mathbb{Z}⟹θ=nπwheren∈Z
\sf{ \:Which \: is \: the \: required \: values \: of \: \theta \: \: }Whichistherequiredvaluesofθ