plz answer it guys l need help
Answers
FORMULA TO BE IMPLEMENTED
TO DETERMINE
1.
2.
EVALUATION
1.
2.
Step-by-step explanation:
\displaystyle\huge\red{\underline{\underline{Solution}}}
Solution
FORMULA TO BE IMPLEMENTED
{e}^{i \theta} = \cos \theta + i \sin \thetae
iθ
=cosθ+isinθ
TO DETERMINE
1.
\displaystyle \: \sqrt{3} ( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} )
3
(cos
6
π
+isin
6
π
)
2.
\displaystyle \: {e}^{ \: \frac{\pi}{3} i\: }e
3
π
i
EVALUATION
1.
\displaystyle \: \sqrt{3} ( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} )
3
(cos
6
π
+isin
6
π
)
= \displaystyle \: \sqrt{3} ( \frac{ \sqrt{3} }{2} + i \frac{1}{2} )=
3
(
2
3
+i
2
1
)
= \displaystyle \: \frac{3}{2} + \frac{ \sqrt{3} i}{2}=
2
3
+
2
3
i
\sf { \: Which \: is \: of \: the \: form \: x + iy\: }Whichisoftheformx+iy
where \: \: \displaystyle \: x = \frac{3}{2} \: \: and \: \: y = \frac{ \sqrt{3} }{2}wherex=
2
3
andy=
2
3
2.
\displaystyle \: {e}^{ \: \frac{\pi}{3} i\: }e
3
π
i
= \displaystyle \: ( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} )=(cos
3
π
+isin
3
π
)
= \displaystyle \: \frac{1}{2} + i \frac{ \sqrt{3} }{2}=
2
1
+i
2
3
= \displaystyle \: \frac{1}{2} + \frac{ \sqrt{3}i }{2}=
2
1
+
2
3
i
\sf { \: Which \: is \: of \: the \: form \: x + iy\: }Whichisoftheformx+iy
where \: \: \displaystyle \: x = \frac{3}{2} \: \: and \: \: y = \frac{ \sqrt{3} }{2}wherex=
2
3
andy=
2
3