Math, asked by 1806prince2021, 1 day ago

plz answer it is very urgent from 83 to 85
donot give wrong answer paap lagega​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that the required angle be x.

Given that,

\rm \:  |\vec{a} | = 3

\rm \:  |\vec{b} | = 5

\rm \:  |\vec{c} | = 7

Now, Further given that

\rm \: \vec{a}  + \vec{b}  + \vec{c}  = \vec{0}

can be rewritten as

\rm \: \vec{a} \:   + \:  \vec{b}  \: = \:   -  \: \vec{c}

On taking dot with itself on both sides, we get

\rm \: (\vec{a}  + \vec{b} ).(\vec{a}  + \vec{b} ) = ( - \vec{c} ).( - \vec{c} )

\rm \: \vec{a} .\vec{a}  + \vec{a} .\vec{b}  + \vec{b} .\vec{a}  + \vec{b} .\vec{b}  = \vec{c} .\vec{c}

\rm \:   { |\vec{a} | }^{2}    + \vec{a} .\vec{b}  + \vec{a} .\vec{b}  +  { |\vec{b} | }^{2} = { |\vec{c} | }^{2}

\rm \:    {3}^{2}     +2 \vec{a} .\vec{b}   +   {5}^{2} = {7}^{2}

\rm \:   9+2  |\vec{a} | |\vec{b} |  \: cosx+   25 = 49

\rm \:   2  (3)(5)  \: cosx+   34 = 49

\rm \: 30  \: cosx= 49 - 34

\rm \: 30  \: cosx= 15

\rm \: cosx = \dfrac{15}{30} = \dfrac{1}{2}

\rm \: cosx =cos \dfrac{\pi}{3}

\rm\implies \:x = \dfrac{\pi}{3} \\

So, option (c) is correct.

\large\underline{\sf{Solution-84}}

Given that,

\rm \: \vec{a}  + \vec{b}  + \vec{c}  = \vec{0}

Taking dot with itself on both sides, we get

\rm \: (\vec{a}  + \vec{b}  + \vec{c} ).(\vec{a}  + \vec{b}  + \vec{c} ) = 0

\rm \: \vec{a} .\vec{a}  + \vec{a} .\vec{b}  + \vec{a} .\vec{c}  + \vec{b} .\vec{a}  + \vec{b} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{a}  + \vec{c} .\vec{b}  + \vec{c} .\vec{c} = 0

\rm \:  { |\vec{a} | }^{2} +  { |\vec{b} | }^{2} +  { |\vec{c} | }^{2}  + 2(\vec{a} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{a} ) = 0

\rm \:   {3}^{2}  +  {5}^{2}  +  {7}^{2}   + 2(\vec{a} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{a} ) = 0

\rm \:  9 + 25 + 49   + 2(\vec{a} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{a} ) = 0

\rm \:  83   + 2(\vec{a} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{a} ) = 0

\rm \:  2(\vec{a} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{a} ) =  - 83

\rm\implies \:\rm \: \vec{a} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{a}  =   \: -  \:  \dfrac{83}{2}  \\

So, option (b) is correct.

\large\underline{\sf{Solution-85}}

Let required angle be x.

Given that,

\rm \: \vec{a}  + \vec{b}  + \vec{c}  = \vec{0}

can be rewritten as

\rm \: \vec{b}  + \vec{c}  = \:  -  \:  \vec{a}

On taking dot with itself on both sides, we get

\rm \:( \vec{b}  + \vec{c}).(\vec{b}  + \vec{c} )  = \: ( -  \:  \vec{a} ).( - \vec{a} )

\rm \: \vec{b} .\vec{b}  + \vec{b} .\vec{c}  + \vec{c} .\vec{b}  + \vec{c} .\vec{c}  = \vec{a} .\vec{a}

\rm \:  { |\vec{b} | }^{2} + 2(\vec{b} .\vec{c} ) +  { |\vec{c} | }^{2}  =  { |\vec{a} | }^{2}

\rm \:   {5}^{2}  + 2 |\vec{b} |  |\vec{c} | \: cosx +   {7}^{2}   =  {3}^{2}

\rm \:   25+ 2  \times 5 \times 7 \times  \: cosx +  49   =  9

\rm \:   74 + 70  \: cosx   =  9

\rm \:    70  \: cosx   =  9  - 74

\rm \:    70  \: cosx   =  - 65

\rm\implies \:cosx \:  =  \:  -  \: \dfrac{13}{14}

So, option (d) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Formula Used

\rm \: \vec{a} .\vec{a}  =  { |\vec{a} | }^{2}  \\

\rm \: \vec{a} .\vec{b}  = \vec{b} .\vec{a}  \\

\rm \: \vec{a} .\vec{b}  = |\vec{a} |\:|\vec{b} |  \: cos \theta \\

Similar questions