Math, asked by lopamudrasahu059, 1 year ago

plz answer it very first​

Attachments:

Answers

Answered by Sharad001
54

Question :-

Solve this differential equation ,

 \sf{x \red{ \frac{dy}{dx}}  + \green{  {y}^{2}}  = 9} \\

Answer :-

\sf{  \red{\frac{1}{2 \times 3} } log( \green{ \frac{3 + y}{3 - y}} )  =   \orange{log(x)}  + c} \:  \:  \\

Explanation :-

Given equation is

 \rightarrow \: \sf{x \red{ \frac{dy}{dx}}  + \green{  {y}^{2}}  = 9} \\  \:

we will solve this by variable separation method of differential equation,

means one side only one type of function ,

  \rightarrow \sf{x \:  \red{ \frac{dy}{dx}}     = 9 -  \green{ {y}^{2} } }\\  \:  \\  \\  \rightarrow  \sf{\:  \red{x }\:dy = \blue{  (9 -   }\orange{{x}^{2}} )dx} \\  \\  \rightarrow \sf{ \green{ \frac{1}{9 -  {y}^{2}} }  =  \red{ \frac{1}{x} dx}} \\  \\ \sf{ taking \int \: on \: both \: sides} \\  \\  \rightarrow \sf{ \green{  \int \: } \red{ \frac{1}{ {3}^{2}  -  {y}^{2} }} dy = \orange{  \int \:  }\frac{1}{x} dx} \\  \\  \because  \sf{\int \:  \red{ \frac{1}{ {a}^{2} -  {x}^{2}  }}  dx=  \frac{1}{2a}  \green{ log( \frac{a  +  x}{a  -  x} ) } + c} \\  \\  \therefore \\  \\  \rightarrow \sf{  \red{\frac{1}{2 \times 3} } log( \green{ \frac{3 + y}{3 - y}} )  =   \orange{log(x)}  + c} \\  \\  \rightarrow \sf{  \green{log(  \frac{3 + y}{3 - y} ){}^{ \frac{1}{6} }}   -  log(x)  = c \:  \: ..(1)} \\  \\  \because \sf{  log(m)  -  log(n)  =  log( \frac{m}{n} ) } \\  \\  \rightarrow \:   \sf{ log(  \red{\frac{ \big( { \frac{3 + y}{3 - y}  \big)}^{ \frac{1}{6} } }{x} })  = c} \\  \\ \sf{ hence }\:  \\ \sf{ \blue{  put \: value \: of \: c \: in \: eq.(1)}}\\  \rightarrow \: \orange{ \sf{ log(  \frac{3 + y}{3 - y} ){}^{ \frac{1}{6} }  }  =  \green{ log(x) } \:  +} \red{ log( \frac{ \big( { \frac{3 + y}{3 - y}  \big)}^{ \frac{1}{6} } }{x} )  \: }

__________________

#answerwithquality

#BAL

Answered by shadowsabers03
1

So we're given,

x\dfrac {dy}{dx}+y^2=9

So,

x\dfrac {dy}{dx}=9-y^2\\\\\\x\cdot\dfrac {1}{dx}=\dfrac {9-y^2}{dy}\\\\\\\dfrac {dx}{x}=\dfrac {dy}{9-y^2}\\\\\\\dfrac {1}{x}\ dx=\dfrac {1}{9-y^2}\ dy

Now, integrating both the sides of the equation,

\displaystyle\int\dfrac {1}{x}\ dx=\int\dfrac {1}{9-y^2}\ dy\\\\\\\int\dfrac {1}{x}\ dx=\int\dfrac {1}{(3+y)(3-y)}\ dy\quad\longrightarrow\quad (1)

Now, consider the RHS only.

\displaystyle\int\dfrac {1}{(3+y)(3-y)}\ dy

Let,

\dfrac {1}{(3+y)(3-y)}=\dfrac {A}{3+y}+\dfrac{B}{3-y}\quad\longrightarrow\quad (2)

for some constants A and B. Then,

\dfrac {1}{(3+y)(3-y)}=\dfrac {A(3-y)+B(3+y)}{(3+y)(3-y)}

Since the denominators are same, the numerators imply,

A(3-y)+B(3+y)=1

Taking y=3, we get,

A(0)+6B=1\\\\\\B=\dfrac {1}{6}

Taking y=-3, we get,

6A+B(0)=1\\\\\\A=\dfrac {1}{6}

Then (2) becomes,

\dfrac {1}{(3+y)(3-y)}=\dfrac {1}{6(3+y)}+\dfrac{1}{6(3-y)}\\\\\\\dfrac {1}{(3+y)(3-y)}=\dfrac {1}{6}\left [\dfrac {1}{3+y}+\dfrac{1}{3-y}\right]

Thus, in (1),

\displaystyle\int\dfrac {1}{x}\ dx=\dfrac {1}{6}\int\left(\dfrac {1}{3+y}+\dfrac{1}{3-y}\right)\ dy\\\\\\\int\dfrac {1}{x}\ dx=\dfrac {1}{6}\int\dfrac {1}{3+y}\ dy-\dfrac {1}{6}\int\dfrac{-1}{3-y}\ dy\\\\\\\ln|x|+\ln(a)=\dfrac {1}{6}\ln|3+y|-\dfrac {1}{6}\ln|3-y|+\ln(b)\\\\\\\ln|ax|=\ln\left (b\left|\dfrac {3+y}{3-y}\right|^{\frac {1}{6}}\right)

for some constants a and b.

Taking antilogs on both sides,

ax=b\left (\dfrac {3+y}{3-y}\right)^{\frac {1}{6}}\\\\\\b^6\left (\dfrac {3+y}{3-y}\right)=a^6x^6\\\\\\\dfrac {3+y}{3-y}=\dfrac {a^6}{b^6}x^6

Replacing \dfrac {a^6}{b^6} by c,

\dfrac {3+y}{3-y}=cx^6\\\\\\\dfrac {y+3}{y-3}=\dfrac {cx^6}{-1}\quad\longrightarrow\quad (3)

I think we may recall the componendo - dividendo rule.

\dfrac {m}{n}=\dfrac {p}{q}\quad\iff\quad\dfrac {m+n}{m-n}=\dfrac {p+q}{p-q}

Thus, (3) implies,

\dfrac {y}{3}=\dfrac {cx^6-1}{cx^6+1}\\\\\\\boxed {\boxed {y=3\dfrac {(cx^6-1)}{(cx^6+1)}}}

Hence Solved!

#answerwithquality

#BAL

Similar questions