Geography, asked by sjk17312, 1 month ago

plz answer its urgent
⚠️don't spam⚠️​

Attachments:

Answers

Answered by Anonymous
38

Answer:

4. \:  \:   \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  = a + b \sqrt{6}  \\  \\  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  =  \frac{ {(  \sqrt{3} +  \sqrt{2} )  }^{2} }{  { \sqrt{3} }^{2}   -  { \sqrt{2} }^{2} }  \\  \\  \frac{3 + 2 + 2 \sqrt{2}  \sqrt{3} }{3 - 2}  =  \frac{5 + 2 \sqrt{6} }{1}  \\

Value of a = 5 and b = 2 ( option A. is correct )

Identities used in this answer:

(a+b)² = a² + b² + 2ab

(a+b) (a-b) = a² - b²

5. \:  \:  \:  \:  \frac{7}{3 \sqrt{3} - 2 \sqrt{2}  }   \\  \\ rationalising \: denominator \\  \\  \frac{7}{3 \sqrt{3} - 2 \sqrt{2}  }  \times  \frac{3 \sqrt{3} + 2 \sqrt{2}  }{3 \sqrt{3}  + 2 \sqrt{2} }   \\  \\  =  \frac{7(3 \sqrt{3} - 2 \sqrt{2}  )}{ {(3 \sqrt{3}) }^{2} -  {(2 \sqrt{2} )}^{2}  }  =  \frac{{7(3 \sqrt{3} - 2 \sqrt{2}  )}}{27 - 8}  \\  \\  =  \frac{{7(3 \sqrt{3} - 2 \sqrt{2}  )}}{19}

Option B. is correct = 19.

Identity used in this answer :

(a+b) (a-b) = a² - b²

Answered by shadiyaathar
4

\Large\tt{waah \:bhai!}

mai abhi tak yaad hu aapko

\huge\sf\it  \purple{♡thank \: you \: so \: much♡}

aur kaise ho?

everything fine?

orh life kesi chal rahi h

report it

Similar questions