Math, asked by anandbudruk18, 1 year ago

plz answer me fast ​

Attachments:

Answers

Answered by AbhijithPrakash
12

Answer:

\dfrac{\left(1+2i\right)\left(1+3i\right)}{2+i}=-1+3i

Step-by-step explanation:

\dfrac{\left(1+2i\right)\left(1+3i\right)}{2+i}

\black{\left(1+2i\right)\left(1+3i\right):}

\left(1+2i\right)\left(1+3i\right)

\gray{\mathrm{Apply\:complex\:arithmetic\:rule}:\quad \left(a+bi\right)\left(c+di\right)=\left(ac-bd\right)+\left(ad+bc\right)i}

\gray{a=1,\:b=2,\:c=1,\:d=3}

=\left(1\cdot \:1-2\cdot \:3\right)+\left(1\cdot \:3+2\cdot \:1\right)i

\gray{\mathrm{Refine}}

=-5+5i

=\dfrac{-5+5i}{2+i}

$\gray{\mathrm{Apply\:complex\:arithmetic\:rule}:\quad \dfrac{a+bi}{c+di}\:=\:\dfrac{\left(c-di\right)\left(a+bi\right)}{\left(c-di\right)\left(c+di\right)}\:=\:\dfrac{\left(ac+bd\right)+\left(bc-ad\right)i}{c^2+d^2}}$

\gray{a=-5,\:b=5,\:c=2,\:d=1}

=\dfrac{\left(-5\cdot \:2+5\cdot \:1\right)+\left(5\cdot \:2-\left(-5\right)\cdot \:1\right)i}{2^2+1^2}

\gray{\mathrm{Refine}}

=\dfrac{-5+15i}{5}

\black{\mathrm{Simplify}\:\dfrac{-5+15i}{5}:}

\dfrac{-5+15i}{5}

\gray{\mathrm{Factor}\:-5+15i:\quad 5\left(-1+3i\right)}

=\dfrac{5\left(-1+3i\right)}{5}

\gray{\mathrm{Divide\:the\:numbers:}\:\frac{5}{5}=1}

=-1+3i

Answered by Anonymous
1

Answer:

Hey mate please refer to the attachment

here we used (a+b)(a-b)=a^2-b^2

and we also know that i^2= -1

Attachments:
Similar questions