Math, asked by roshnigupta, 1 year ago

Plz answer me fast....??

Attachments:

Anurau: the ans is (lmn)²
roshnigupta: no its wrong
Anurau: why?
Anurau: what is right ans?
roshnigupta: 1 is the right answer
Anurau: ok thankyou
roshnigupta: your welcome

Answers

Answered by aman190k
1
Hey, Here is your answer
__________________________

 =  \sqrt[lm]{ \frac{ {x}^{l} }{ {x}^{m} } }  \times  \sqrt[mn]{ \frac{ {x}^{m} }{ {x}^{n} } }  \times  \sqrt[nl]{ \frac{ {x}^{n} }{ {x}^{l} } }  \\  \\  =  \sqrt[lm]{ {x}^{(l - m)}}  \times  \sqrt[mn]{ {x}^{(m - n)}}  \times  \sqrt[nl]{ {x}^{(n - l)} } \\  \\  =  {{x}^{(l - m)} }^{ \frac{1}{lm} }  \times  { {x}^{(m - n)}}^{ \frac{1}{mn} }  \times   {{x}^{(n - l)} }^{ \frac{1}{nl} } \\  \\  =  {x}^{ \frac{l - m}{lm} }  \times  {x}^{ \frac{m - n}{mn} }  \times  {x}^{ \frac{n - l}{nl} }  \\  \\  =  {x}^{ \frac{l - m}{lm} +  \frac{m - n}{mn} +  \frac{n - l}{nl}   }  \\  \\ =   {x}^{ \frac{ln - mn + ml - ln + mn - ml}{lmn} } \\  \\ =   {x}^{ \frac{0}{lmn} }  \\  \\ =   {x}^{0}  \\  \\  = 1
__________________________

Hope it may helpful to you
plzzz mark me as brainlist

@ajaman. .... ^_^

Anurau: which question?
Anurau: no i not take lm,mn,ln in sqroot
Answered by Robin0071
0
Solution:-

lm \sqrt{ \frac{ {x}^{l} }{ {x}^{m} } }  \times mn \sqrt{ \frac{ {x}^{m} }{ {x}^{n} } }  \times nl \sqrt{ \frac{ {x}^{n} }{ {x}^{l} } }  \\  {x}^{ \frac{l - m}{lm} }  \times  {x}^{ \frac{m - n}{ml} }  \times  {x}^{ \frac{n - l}{nl} }  \\  {x}^{ (\frac{l - m}{lm} +  \frac{m - n}{mn}  +  \frac{n - l}{nl}  })  \\  {x}^{( \frac{nl - mn + lm - ln + mn - lm}{lmn} } ) \\  {x}^{ \frac{0}{lmn} }  \\  {x}^{0}  \\  = 1ans \\
☆i hope its help☆
Similar questions