plz answer me I will mark it as brainliest whoever answers first
Attachments:
Answers
Answered by
3
Given x + 1/x = 4.
(1)
On squaring both sides, we get
(x + 1/x)^2 = (4)^2
x^2 + 1/x^2 + 2 * x * 1/x = 16
x^2 + 1/x^2 + 2 = 16
x^2 + 1/x^2 = 16 - 2
x^2 + 1/x^2 = 14.
(2)
(x^2 + 1/x^2) = 14
On squaring both sides, we get
(x^2 + 1/x^2)^2 = (14)^2
x^4 + 1/x^4 + 2 * x^2 * 1/x^2 = 196
x^4 + 1/x^4 + 2 = 196
x^4 + 1/x^4 = 196 - 2
x^4 + 1/x^4 = 194.
(3)
Given (x + 1/x) = 4
On cubing both sides, we get
(x + 1/x)^3 = (4)^3
x^3 + 1/x^3 + 3 * x * 1/x * (x + 1/x) = 64
x^3 + 1/x^3 + 3 * (x + 1/x) = 64
x^3 + 1/x^3 + 3(4) = 64
x^3 + 1/x^3 + 12 = 64
x^3 + 1/x^3 = 64 - 12
x^3 + 1/x^3 = 52.
(4)
Given (x + 1/x) = 4.
We know that (x - 1/x)^2 = (x + 1/x)^2 - 4(x)(1/x)
= (4)^2 - 4
= 16 - 4
= 12.
Hope this helps!
(1)
On squaring both sides, we get
(x + 1/x)^2 = (4)^2
x^2 + 1/x^2 + 2 * x * 1/x = 16
x^2 + 1/x^2 + 2 = 16
x^2 + 1/x^2 = 16 - 2
x^2 + 1/x^2 = 14.
(2)
(x^2 + 1/x^2) = 14
On squaring both sides, we get
(x^2 + 1/x^2)^2 = (14)^2
x^4 + 1/x^4 + 2 * x^2 * 1/x^2 = 196
x^4 + 1/x^4 + 2 = 196
x^4 + 1/x^4 = 196 - 2
x^4 + 1/x^4 = 194.
(3)
Given (x + 1/x) = 4
On cubing both sides, we get
(x + 1/x)^3 = (4)^3
x^3 + 1/x^3 + 3 * x * 1/x * (x + 1/x) = 64
x^3 + 1/x^3 + 3 * (x + 1/x) = 64
x^3 + 1/x^3 + 3(4) = 64
x^3 + 1/x^3 + 12 = 64
x^3 + 1/x^3 = 64 - 12
x^3 + 1/x^3 = 52.
(4)
Given (x + 1/x) = 4.
We know that (x - 1/x)^2 = (x + 1/x)^2 - 4(x)(1/x)
= (4)^2 - 4
= 16 - 4
= 12.
Hope this helps!
Rasika4321:
thanx for the answer
Similar questions