Math, asked by naveengokara55, 7 months ago

plz answer my question ​

Attachments:

Answers

Answered by Anonymous
4

Solution:

 \rm :  \implies \bigg( \dfrac{3}{2}  \bigg) {}^{5}  \times  \bigg( \dfrac{3}{2}  \bigg) {}^{4}  =  \bigg( \dfrac{3}{2}  \bigg) {}^{2n + 1}

using exponential law

  \rm\bigg( \dfrac{3}{2}  \bigg) {}^{5 + 4}  =\bigg( \dfrac{3}{2}  \bigg)  {}^{2n + 1}

 \rm\bigg( \dfrac{3}{2}  \bigg)  {}^{9}  = \bigg( \dfrac{3}{2}  \bigg)  {}^{2n + 1}

Now we can write

 \rm \: 9 = 2n + 1

 \rm \: 2n = 9 - 1

 \rm \: 2n = 8

 \rm \: n  = \dfrac{8}{2}

 \rm \: n \:  = 4

So value of n = 4

Some exponential law

 \to \rm \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \to \rm \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \to \rm \: a {}^{ - 1}  =  \dfrac{1}{a}

 \to \rm {a}^{0}  = 1

 \rm \to(a {}^{m} ) {}^{n}  =  {a}^{mn}

 \to \rm \sqrt[2]{a}  =  {a}^{ \frac{1}{2} }

Answered by uditagupta2020
1

PLEASE SEE THE ABOVE ATTACHMENT.

Attachments:
Similar questions