Math, asked by Evraj, 1 year ago

plz answer my question .simplify by rationalizing denominator

Attachments:

Evraj: pls help

Answers

Answered by kamlakshiverma
0
Hope my answer helps you
Attachments:
Answered by InesWalston
0

Answer-

Simplifying the expression, its value came out to be 0

Solution-

The given expression is,

=\frac{2}{\sqrt{5}+ \sqrt{3}}+\frac{1}{\sqrt{2}+ \sqrt{3}}-\frac{3}{\sqrt{5}+\sqrt{2}}

=\frac{2(\sqrt{5}- \sqrt{3})}{(\sqrt{5}+ \sqrt{3})(\sqrt{5}- \sqrt{3})}+\frac{1(\sqrt{2}- \sqrt{3})}{(\sqrt{2}+ \sqrt{3})(\sqrt{2}- \sqrt{3})}-\frac{3(\sqrt{5}- \sqrt{2})}{(\sqrt{5}+\sqrt{2})(\sqrt{5}- \sqrt{2})}

=\frac{2(\sqrt{5}- \sqrt{3})}{2}+\frac{1(\sqrt{2}- \sqrt{3})}{-1}-\frac{3(\sqrt{5}- \sqrt{2})}{3}

=(\sqrt{5}- \sqrt{3})-(\sqrt{2}- \sqrt{3})-(\sqrt{5}- \sqrt{2})

=\sqrt{5}- \sqrt{3}-\sqrt{2}+\sqrt{3}-\sqrt{5}+ \sqrt{2}

=0


Similar questions