Math, asked by alok3475, 1 month ago

Plz answer my question with all steps
Don't spam
All steps are needed​

Attachments:

Answers

Answered by King412
71

 \\   \underline\bold{ \large \: Solution  :  -}  \\

We know that , If a,b,c are in A.P .The difference between two consecutive numbers are equal. That means 2b = a + c

So, Let

  •  \:  \sf \: a = 1

  •  \:  \:   \sf b  =  log_9( {3}^{1 - x}  + 2)

  •  \sf   \:  \: c =  log_{3}(4   \times  {3}^{x}  - 1)

Therefore,

 \\ \sf \:  \:  2 \times  log_{9}( {3}^{1 - x}  + 2) =  log_{3}(4 \times  {3}^{x}  - 1)  + 1 \\

 \\  \sf \qquad \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dots using \: \bold{  log_{a}a = 1}

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:  \:  \:  \:  2 \times  log_{ {3}^{2} }( {3}^{1 - x}  + 2) =  log_{3}(4 \times  {3}^{x}  - 1)  +  log_{3}3  \\

 \\  \sf \qquad \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dots using \:   \log_{b}a +    \log_{b}c =  \log_bac \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:  \:  \:  \:  2 \times  \frac{1}{2}  log_{ {3}}( {3}^{1 - x}  + 2) =  log_{3}(4 \times  {3}^{x}  - 1) 3  \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:    log_{ {3}}( {3}^{1 - x}  + 2) =  log_{3}(12\times  {3}^{x}  - 3)   \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:    {3}^{1 - x}   + 2 = 12 \times  {3}^{x}  - 3\\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:     \frac{3}{ {3}^{x} } + 2 = 12 \times  {3}^{x}   - 3\\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:     3 + 2 \times  {3}^{x}  = 12 {( {3}^{x} )}^{2} - 3 \times  {3}^{x} \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:     12 \times  {( {3 }^{x}) }^{2}   - 5 \times  {3}^{x} - 3 = 0 \\

Now , let's assume  \sf 3^x = t , so

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:     12{t }^{2}   - 5 t - 3 = 0 \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:     12{t }^{2}   - 9t + 4t- 3 = 0 \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:     3t(4t - 3) + 1(4t - 3) \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:    (4t - 3)  = 0 \qquad \: or \:  \qquad (3t  + 1) = 0 \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:    t  =  \frac{3}{4}  \qquad \: or \:  \qquad t  =  \bigg( -  \frac{1}{3} \bigg) \\

Now,

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:     {3}^{x} =   \frac{3}{4}   \qquad \: or \:  \qquad  {3}^{x}   =  \bigg( -  \frac{1}{3} \bigg) \\

By applying log ,

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:      \log {3}^{x}  =   \log \  \frac{3}{4}    \qquad \: or \:   \log {3}^{x}   =   \log\bigg( -  \frac{1}{3} \bigg) \\

 \\  \: \qquad  \:  \:  \:  \:  \:  \:  \longmapsto\sf \:      x\log {3}^ =   \log \  \frac{3}{4}    \qquad \: or  \qquad\:  x  \log {3}^  =   \log\bigg( -  \frac{1}{3} \bigg) \\

We know that ,  \sf \log_ba can exists only a ≥ 0.

Therefore,

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x \log 3 =  \log \frac{3}{4}  \\

 \\  \sf \:  \:  \:  \implies \: x \log3 =  \log3 -  \log4 \\

 \\  \sf \:  \:  \:  \implies \: x =   \frac{\log3 -  \log4}{ \log3} \\

 \\  \sf \:  \:  \:  \implies \boxed{ \: \bold{   \: x =  1 -   \log_{3}(4)}}  \\

Similar questions