Math, asked by oliyarmia1981, 1 month ago

plz answer plz ????​

Attachments:

Answers

Answered by MrMonarque
43

Hello, Buddy!!

ɢɪᴠᴇɴ:-

  • ∠POR:∠ROQ = 5:7

ᴛᴏ ꜰɪɴᴅ:-

  • Value of all angles.

ʀᴇQᴜɪʀᴇᴅ ꜱᴏʟᴜᴛɪᴏɴ:-

Let,

∠POR = 5x

∠ROQ = 7x

→ ∠POR+∠ROQ = 180° [Linear Angles]

→ 5x+7x = 180°

→ 12x = 180°

→ x = 180°/12

→ x = 15°

∠POR = 5x => 5×15° → 75°

∠ROQ = 7x => 7×15° → 105°

∠POR = ∠POS [Vertically Opposite Angles]

∠ROQ = ∠SOQ [Vertically Opposite Angles]

  • ∠POR = 75°
  • ∠ROQ = 105°
  • ∠POS = 75°
  • ∠SOQ = 105°

\boxed{\tt{@MrMonarque♡}}

Hope It Helps You ✌️

Answered by IIMrVelvetII
16

GIVEN :-

 \sf \blue{ \angle POR : \angle ROQ = 5:7}

TO FIND :-

Value of all the angles.

SOLUTION :-

Let,

 \sf \angle POR = 5x

 \sf \angle ROQ = 7x

Now,

 \sf → \angle POR+ \angle ROQ = 180 \degree

[Linear Angles]

 \sf → 5x+7x = 180 \degree

 \sf → 12x = 180 \degree

 \sf → x = \frac{180 \degree}{12}

 \sf \fbox{→ x = 15 \degree}

Now,

 \sf \green{ \angle POR = 5x = 5×15 \degree =  75 \degree}

 \sf \green{ \angle ROQ = 7x = 7×15 \degree = 105 \degree} [Vertically Opposite Angles]

 \sf \green{\angle ROQ = \angle SOQ} [Vertically Opposite Angles]

Hence, the value of the angles are :-

 \sf \red{ \angle POR =75 \degree}

 \sf \red{ \angle ROQ = 105 \degree}

 \sf \red{\angle POS = 75 \degree}

 \sf \red{\angle SOQ = 105 \degree}

Similar questions