Math, asked by tctechnical01, 9 months ago

Plz answer plz plsssss faassttt answer with explaination​

Attachments:

Answers

Answered by vidhi128212
0

Answer:

c2

=a

2

(1+m

2

) if the equation \bold{(1+m^{2}) \times x^{2}+2 m c x+(c^{2}-a^{2})=0}(1+m

2

)×x

2

+2mcx+(c

2

−a

2

)=0 has equal roots.

Given:

The equation (1+m^{2}) \times x^{2}+2 m c x+(c^{2}-a^{2})=0(1+m

2

)×x

2

+2mcx+(c

2

−a

2

)=0 has equal roots.

To prove:

Prove that c^{2}=a^{2}(1+m^{2})c

2

=a

2

(1+m

2

)

Proof:

Any quadratic equation a x^{2}+b x+c=0ax

2

+bx+c=0 has real roots when the discriminant is equal to 0. That is

b^{2}-4 a c=0b

2

−4ac=0

Consider the given equation (1+m^{2}) \times x^{2}+2 m c x+(c^{2}-a^{2})=0(1+m

2

)×x

2

+2mcx+(c

2

−a

2

)=0

This equation is a quadratic equation in x.

Here b=2 m c ; a=1+m^{2} ; c=c^{2}-a^{2}b=2mc;a=1+m

2

;c=c

2

−a

2

So, b^{2}-4 a c=(2 m c)^{2}-4(1+m^{2})(c^{2}-a^{2})=0b

2

−4ac=(2mc)

2

−4(1+m

2

)(c

2

−a

2

)=0

\begin{gathered}\begin{array}{l}{\Rightarrow 4 m^{2} \times c^{2}-4(c^{2}+m^{2} \times c^{2}-a^{2}-m^{2} \times a^{2})=0} \\ {\Rightarrow m^{2} \times c^{2}-c^{2}-m^{2} \times c^{2}+a^{2}+m^{2} \times a^{2}=0} \\ {\Rightarrow c^{2}-a^{2}=m^{2} \times a^{2}}\end{array}\end{gathered}

⇒4m

2

×c

2

−4(c

2

+m

2

×c

2

−a

2

−m

2

×a

2

)=0

⇒m

2

×c

2

−c

2

−m

2

×c

2

+a

2

+m

2

×a

2

=0

⇒c

2

−a

2

=m

2

×a

2

\Rightarrow c^{2}=a^{2}(1+m^{2})⇒c

2

=a

2

(1+m

2

)

Hence proved.

\bold{c^{2}=a^{2}(1+m^{2})}c

2

=a

2

(1+m

2

) if the equation \bold{(1+m^{2}) \times x^{2}+2 m c x+(c^{2}-a^{2})=0}(1+m

2

)×x

2

+2mcx+(c

2

−a

2

)=0 has equal roots.

hope it is helpful

..........plz mark me as brainliest

Similar questions