Math, asked by jannani143, 7 months ago

plz answer properly
no spam
plz no irrelevant answers plz help me friends

Attachments:

Answers

Answered by amankumaraman11
2

3.

 \rm \frac{1}{x - 1}  +  \frac{2}{x - 2}  =  \frac{6}{x - 3}  \\  \\  \to  \tt \frac{(x - 2) + 2(x - 1)}{(x - 1)(x - 2)}  =  \frac{6}{x - 3}  \\  \\ \to  \tt \frac{x - 2 + 2x - 2}{ {x}^{2}  - x - 2x + 2}  =  \frac{6}{x - 3}  \\  \\ \to  \tt \frac{ 3x - 4 }{  {x}^{2} - 3x + 2  }  =  \frac{6}{x - 3}  \\  \\ \to  \tt(3x - 4)(x - 3) = (6)( {x}^{2} - 3x + 2 ) \\ \to  \tt {3x}^{2}  - 4x - 3x + 12 =  {6x}^{2}  - 18x + 12 \\  \to  \tt {3x}^{2}  - 7x +  \cancel{12} =  {6x}^{2}  - 18x +  \cancel{12} \\ \to  \tt {3x}^{2}  -  {6x}^{2}  - 7x + 18x = 0 \\ \to  \tt -  {3x}^{2}  + 11x = 0 \\ \to  \tt( - )( { - 3x}^{2} + 11x ) = ( - 1)0 \\  \to  \tt{3x}^{2}  - 11x = 0 \\\to  \tt x(3x - 11 ) = 0 \\  \\    \huge\therefore \:  \:  \:  \sf  x = \red 0 \:  \:  \:  \rm{or} \:  \:   \sf \red{\frac{11}{3} }

4.

 \large \rm {2x}^{2}  + 21x - 50 = 0 \\ \\   \tt \to  {( \sqrt{2} x)}^{2}  + 2( \sqrt{2}x ) \bigg(  \frac{21}{2 \sqrt{2} } \bigg) - 50 +  {\bigg( \frac{21}{2 \sqrt{2} }  \bigg)}^{2}  -  {\bigg( \frac{21}{2 \sqrt{2} }  \bigg)}^{2}  = 0 \\  \\    \to\tt {\bigg\{ \sqrt{2}x +  \frac{21}{2 \sqrt{2} }  \bigg\}}^{2}  - 50 -  \frac{441}{8}  = 0 \\  \\ \to\tt {\bigg\{ \sqrt{2}x +  \frac{21}{2 \sqrt{2} }  \bigg\}}^{2}  -   \bigg\{50 +  \frac{441}{8}  \bigg\} = 0 \\  \\  \to\tt{\bigg\{ \sqrt{2}x +  \frac{21}{2 \sqrt{2} }  \bigg\}}^{2}  - \bigg\{ \frac{400 + 441}{8}  \bigg\}  = 0 \\  \\  \to\tt{\bigg\{ \sqrt{2}x +  \frac{21}{2 \sqrt{2} }  \bigg\}}^{2}  -  \frac{841}{8}  = 0 \\  \\ \to\tt{\bigg\{ \sqrt{2}x +  \frac{21}{2 \sqrt{2} }  \bigg\}}^{2}  - {\bigg\{  \sqrt{ \frac{841}{8} }  \bigg\}}^{2}  = 0 \\  \\  \tt \to  \bigg\{  \sqrt{2} x +  \frac{21}{2 \sqrt{2}  } +  \sqrt{ \frac{841}{8} }   \bigg\} \bigg\{  \sqrt{2} x +  \frac{21}{2 \sqrt{2} }  -  \sqrt{ \frac{841}{8} }  \bigg\} = 0 \\  \\  \tt \to \bigg\{  \sqrt{2} x +  \frac{21}{2 \sqrt{2} }  +  \frac{ \sqrt{841} }{2 \sqrt{2} }  \bigg\}\bigg\{  \sqrt{2} x +  \frac{21}{2 \sqrt{2} }   -  \frac{ \sqrt{841} }{2 \sqrt{2} }  \bigg\} = 0 \\  \\  \tt \to \bigg \{ \frac{4x + 21 +  \sqrt{841} }{2 \sqrt{2} }  \bigg\}\bigg \{ \frac{4x + 21 -  \sqrt{841} }{2 \sqrt{2} } \bigg \} = 0 \\  \\  \tt \to \frac{1}{2 \sqrt{2} }  \bigg \{ 4x + 21 +  \sqrt{841} \bigg \} \bigg \{ 4x + 21 -  \sqrt{841} \bigg \} = 0 \\  \\ \tt \to \bigg \{ 4x + 21 +  \sqrt{841} \bigg \} \bigg \{ 4x + 21 -  \sqrt{841} \bigg \} =  \frac{0}{ \frac{1}{2 \sqrt{2} } }  \\  \\ \tt \to \bigg \{  \red{4x + 21 +  \sqrt{841}} \bigg \} \bigg \{  \red{4x + 21 -  \sqrt{841} }\bigg \} = 0

Answered by aadishekh5
0

Answer:

if you play free fire then this is my Id search me and give me friend request

pls

Id : Aadi@7070

Similar questions