plz answer questions 12,13
Attachments:
Answers
Answered by
1
Ans.(13)
2+√3/2-√3 = a+b√3
2+√3× (2+√3) / (2-√3)(2+√3)
(2+√3)^2 / (2)^2- (√3)^2
[(a+b)^2= a^2+b^2+2ab]. & [(a+b)(a-b)=a^2-b^2]
(2^2+ (√3)^2+2×2×√3) / 4-3
(4+3+4√3) / 1
7+4√3 = a+b√3
on comparing
a= 7, b= 4
value of a^2+b^2
= (7)^2+(4)^2
=49+16
=65
2+√3/2-√3 = a+b√3
2+√3× (2+√3) / (2-√3)(2+√3)
(2+√3)^2 / (2)^2- (√3)^2
[(a+b)^2= a^2+b^2+2ab]. & [(a+b)(a-b)=a^2-b^2]
(2^2+ (√3)^2+2×2×√3) / 4-3
(4+3+4√3) / 1
7+4√3 = a+b√3
on comparing
a= 7, b= 4
value of a^2+b^2
= (7)^2+(4)^2
=49+16
=65
Answered by
1
Hi friend,
(12)
a = 2-√5/2+√5
a = 2-√5/2+√5×2-√5/2-√5
a = (2-√5)(2-√5)/(2+√5)(2-√5)
a = (2-√5)²/(2²-√5²)
a = [2²+√5²-2(2)(√5)]/(4-5)
a = (4+5-4√5)/-1
a = -(9-4√5)
a = -9+4√5
a² = (-9+4√5)² = (-9)²+(4√5)²+2(-9)(4√5)
= 81+80-72√5 = 161-72√5
b = 2+√5/2-√5
b = 2+√5/2-√5×2+√5/2+√5
b = (2+√5)(2+√5)/(2-√5)(2+√5)
b = (2+√5)²/(2²-√5²)
b = [2²+√5²+2(2)(√5)]/(4-5)
b = (4+5+4√5)/-1
b = -(9+4√5)
b = -9-4√5
b² = (-9-4√5)² = (-9)²+(4√5)²-2(-9)(4√5)
= 81+80+72√5 = 161+72√5
a²-b²
= 161-72√5-(161+72√5)
= 161-72√5-161-72√5
= -144√5
(13)
2+√3/2-√3
= (2+√3)/(2-√3)×(2+√3)/(2+√3)
= (2+√3)²/(2-√3)(2+√3)
= [2²+√3²+2(2)(√3)]/(2²-√3²)
= 4+3+4√3/4-3
= 7+4√3 = a+b√3
By comparing, we can say that
a = 7 and b = 4
a²+b² = 7²+4² = 49+16 = 65
Hope it helps......
(12)
a = 2-√5/2+√5
a = 2-√5/2+√5×2-√5/2-√5
a = (2-√5)(2-√5)/(2+√5)(2-√5)
a = (2-√5)²/(2²-√5²)
a = [2²+√5²-2(2)(√5)]/(4-5)
a = (4+5-4√5)/-1
a = -(9-4√5)
a = -9+4√5
a² = (-9+4√5)² = (-9)²+(4√5)²+2(-9)(4√5)
= 81+80-72√5 = 161-72√5
b = 2+√5/2-√5
b = 2+√5/2-√5×2+√5/2+√5
b = (2+√5)(2+√5)/(2-√5)(2+√5)
b = (2+√5)²/(2²-√5²)
b = [2²+√5²+2(2)(√5)]/(4-5)
b = (4+5+4√5)/-1
b = -(9+4√5)
b = -9-4√5
b² = (-9-4√5)² = (-9)²+(4√5)²-2(-9)(4√5)
= 81+80+72√5 = 161+72√5
a²-b²
= 161-72√5-(161+72√5)
= 161-72√5-161-72√5
= -144√5
(13)
2+√3/2-√3
= (2+√3)/(2-√3)×(2+√3)/(2+√3)
= (2+√3)²/(2-√3)(2+√3)
= [2²+√3²+2(2)(√3)]/(2²-√3²)
= 4+3+4√3/4-3
= 7+4√3 = a+b√3
By comparing, we can say that
a = 7 and b = 4
a²+b² = 7²+4² = 49+16 = 65
Hope it helps......
Similar questions