PLZ ANSWER!!!!!!!!!!
SATISFYING ANSWER WILL BE MARKED AS BRAINLIEST
Answers
By taking LHS
= sin11x/4 sinx/4+ sin7x/4 sin3x/4
= (1/2)[2sin11x/4 sinx/4+ 2sin7x/4 sin3x/4] {multiply and divide by 2}
= (1/2)[cos{(11x-x)/4}-cos{(11x+x)/4} +cos{(7x-3x)/4}-cos{(7x+3x)/4}]
[Using 2sinAsinB = cos(A-B) - cos(A+B)]
= (1/2)[cos{(5x)/2}-cos(3x) + cos(x)-cos{(5x)/2}]
= (1/2)[cos(x)-cos(3x)]
= (1/2)[2sin{(x+3x)/2} sin{(3x-x)/2}] (∵ cosA-cosB = 2sin{(A+B)/2} sin{(B-A)/2})
= sin2x sinx
=RHS(Proved)
____________________________________________
Hope It Helps
Best of Luck
Please Mark My Answer as Brainliest Answer
Hi there
Here is your answer (sorry for late)
To Prove sin11x/4 sinx/4+ sin7x/4 sin3x/4== sin2x sinx
Plan: In this type of questions our plan is to convert the question into the
following formulaes :
2 sin A cos B =sin(A + B) + sin(A − B)
2 cos A cos B =cos(A − B) + cos(A + B)
2 sin A sin B =cos(A − B) − cos(A + B)
Now,
By taking LHS
= sin11x/4 sinx/4+ sin7x/4 sin3x/4
= (1/2)[2sin11x/4 sinx/4+ 2sin7x/4 sin3x/4] {multiply and divide by 2}(to convert it into above formula)
= (1/2)[cos{(11x-x)/4}-cos{(11x+x)/4} +cos{(7x-3x)/4}-cos{(7x+3x)/4}]
[Using 2sinAsinB = cos(A-B) - cos(A+B)]
= (1/2)[cos{(5x)/2}-cos(3x) + cos(x)-cos{(5x)/2}]
= (1/2)[cos(x)-cos(3x)]
= (1/2)[2sin{(x+3x)/2} sin{(3x-x)/2}] (∵ cosA-cosB = 2sin{(A+B)/2} sin{(B-A)/2})
= sin2x sinx
Hence Proved
____________________________________________
Regards