Math, asked by SuvarshaBojja, 1 month ago

Plz answer the above question with explanation ​

Attachments:

Answers

Answered by YourHelperAdi
24

To find :

 \bold{ \: the \: value \: of \:  \frac{se {c}^{2} \theta  - cose {c}^{2} \theta  }{se {c}^{2} \theta \:  +  cose {c}^{2} \theta  } }

Given :

 \bold{ cot \theta =  \frac{1}{ \sqrt{7} }}

Always Remember :

 \bull  \: \bold{cose {c}^{2}  \theta  -  {cot}^{2}  \theta = 1} \\  \bullet  \:  \bold{ cot  \theta = cosec \theta \times  \frac{1}{sec \theta} }

Solution :

as from the above identity , we know that :

 \bold{ cose {c}^{2} \theta  -  {cot}^{2} \theta = 1 } \\  \implies \bold{ {cosec}^{2} \theta -  \frac{1}{{7} }  = 1} \\  \implies \bold{ {cosec}^{2}  \theta =1 +   \frac{1}{ {7} } } \\  \implies \bold{ {cosec}^{2}  \theta =  \frac{8}{7} }

hence, the value of cosec² theta:

 \bold{ {cosec}^{2}  \theta =  \frac{8}{7} } \\  \implies \bold{cosec \theta =  \sqrt{ \frac{8}{7} } } \\  \implies \bold{ cosec \theta =   \frac{ \sqrt{8} }{ \sqrt{7} } }

From the second identity Above, we know that :

 \bold{cot \theta =  cosec \theta \times  \frac{1}{sec \theta} } \\  \implies \bold{ \frac{1}{ \sqrt{7} }  =  \frac{ \sqrt{8} }{ \sqrt{7} }  \times  \frac{1}{sec \:  \theta} } \\  \implies \bold{sec \theta =   \cancel{\sqrt{7} } \times  \frac{ \sqrt{8} }{  \cancel{\sqrt{7}} } } \\  \implies \bold{sec \theta =  \sqrt{8} }

hence,

 \bold{ \frac{ {sec}^{2}  \theta-  {cosec}^{2} \theta  }{  {sec}^{2}  \theta +  {cosec}^{2} \theta } } \\ \\ \implies  \bold{ \frac{ {sec}^{2}  \theta-  {cosec}^{2} \theta  }{  {sec}^{2}  \theta +  {cosec}^{2} \theta } }  \bold{ =  \frac{8  -  \frac{8}{7}}{8 +  \frac{8}{7} } } \\  \\  \implies \:  \bold{ \frac{ {sec}^{2}  \theta-  {cosec}^{2} \theta  }{  {sec}^{2}  \theta +  {cosec}^{2} \theta } } =  \bold{ \frac{ \frac{ {48}}{ \cancel7}}{ \frac{64}{ \cancel7} } } \\  \\  \implies  \bold{ \frac{ {sec}^{2}  \theta-  {cosec}^{2} \theta  }{  {sec}^{2}  \theta +  {cosec}^{2} \theta } } =  \bold{ \frac{ \cancel{48}}{ \cancel{64}} } \\ \\   \implies \:  \bold{ \frac{ {sec}^{2}  \theta-  {cosec}^{2} \theta  }{  {sec}^{2}  \theta +  {cosec}^{2} \theta } } =  \bold{ \frac{2}{3} }

hence, your answer is 2/3

Other Information:

 \bull  \: \bold{sin \theta =  \frac{1}{cosec \theta} } \\   \bull \:  \bold{cos \theta =  \frac{1}{sec \theta} } \\  \bull  \:  \bold{cot \theta =  \frac{1}{tan \theta }  } \\  \bull  \: \bold{tan \theta =  \frac{sin \theta}{cos \theta} } \\   \bull \: \bold{cot \theta =  \frac{cos \theta}{sin \theta} }

Similar questions