Math, asked by vishu126191, 1 month ago

plz answer the following questions step by step
NO SPAMMING IS ALLOWED
WRONG ANSWER WILL BE REPORTED​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

 \sf \: If \: f(x) = \dfrac{ \sqrt{2}cosx - 1 }{cotx - 1}, \: x \:  \ne \: \dfrac{\pi}{4}, \: find \: f\bigg(\dfrac{\pi}{4}\bigg) \: if

 \sf \: is \: continuous \: at \: x \:  =  \: \dfrac{\pi}{4}

\large\underline{\sf{Solution-}}

Given that

 \rm :\longmapsto\:\sf \:  \: f(x) = \dfrac{ \sqrt{2}cosx - 1 }{cotx - 1}, \: x \:  \ne \: \dfrac{\pi}{4}\:

Let assume that

\rm :\longmapsto\:f\bigg[\dfrac{\pi}{4} \bigg] = k

We know,

A function f(x) is said to be continuous at x = a, iff

\boxed{ \rm \:\displaystyle\lim_{x \to a}f(x) = f(a)}

Since, it is given that,

 \rm :\longmapsto\:\sf \: f(x) \: is \: continuous \: at \: x \:  =  \: \dfrac{\pi}{4}

Therefore,

\rm :\longmapsto\:\displaystyle\lim_{x \to \dfrac{\pi}{4}} \: f(x) = f\bigg(\dfrac{\pi}{4}\bigg)

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:  \frac{ \sqrt{2}cosx  - 1}{cotx - 1}

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:  \frac{ \sqrt{2}cosx  - 1}{\dfrac{cosx}{sinx}  - 1}

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:  \frac{ \sqrt{2}cosx  - 1}{\dfrac{cosx - sinx}{sinx}}

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:  \frac{sinx(\sqrt{2}cosx  - 1)}{cosx - sinx}

On rationalizing both numerator and denominator, we get

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:  \frac{sinx(\sqrt{2}cosx  - 1)}{cosx - sinx} \times \dfrac{ \sqrt{2} cosx + 1}{ \sqrt{2} cosx + 1}  \times \dfrac{cosx + sinx}{cosx + sinx}

We know,

\boxed{ \rm \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}

So, using this, we get

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:  \frac{sinx( {2cos}^{2} x - 1)(cosx + sinx)}{ ({cos}^{2}x -  {sin}^{2}x)( \sqrt{2}cosx + 1) }

We know,

\boxed{ \rm \:cos2x =  {2cos}^{2}x - 1}

and

\boxed{ \rm \:cos2x =  {cos}^{2}x -  {sin}^{2} x}

So, using this, we get

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:  \frac{sinx( cos2x)(cosx + sinx)}{ cos2x( \sqrt{2}cosx + 1) }

\rm :\longmapsto\:k = \displaystyle\lim_{x \to \dfrac{\pi}{4}} \:   \frac{sinx(cosx + sin)}{\sqrt{2}cosx + 1}

\rm :\longmapsto\:k = sin\dfrac{\pi}{4}\bigg(cos\dfrac{\pi}{4} + sin\dfrac{\pi}{4} \bigg)  \div \bigg( \sqrt{2}cos\dfrac{\pi}{4} + 1 \bigg)

\rm :\longmapsto\:k = \dfrac{1}{ \sqrt{2} } \times \bigg(\dfrac{1}{ \sqrt{2} }  +  \dfrac{1}{ \sqrt{2} } \bigg) \div  \bigg( \sqrt{2} \times \dfrac{1}{ \sqrt{2} } + 1\bigg)

\rm :\longmapsto\:k = \dfrac{1}{ \sqrt{2} } \times \bigg(\dfrac{2}{ \sqrt{2} } \bigg)  \div \bigg(1 + 1 \bigg)

\bf\implies \:k \:  =  \: \dfrac{1}{2}

Hence,

\rm :\longmapsto\:\boxed{ \bf \:  \:  \:  \:f\bigg[\dfrac{\pi}{4} \bigg] = \dfrac{1}{2} \:  \:  \:  \:  }

Similar questions