Math, asked by Adisha01, 1 year ago

Plz answer the qs which is in the attachment...

Attachments:

Answers

Answered by siddhartharao77
6
Given :  \frac{sin^4x}{2} +  \frac{cos^4x}{3} =  \frac{1}{5}

= \ \textgreater \  3sin^4x + 2cos^4x =  \frac{6}{5}

= \ \textgreater \  3sin^4x + 2(1 - sin^2x)^2 =  \frac{6}{5}

= \ \textgreater \  3sin^4x + 2(1 + sin^4x - 2sin^2x) =  \frac{6}{5}

= \ \textgreater \  3sin^4x + 2 + 2sin^4x - 4sin^2x =  \frac{6}{5}

= \ \textgreater \  5sin^4x - 4sin^2x + 2 =  \frac{6}{5}

= \ \textgreater \  25sin^4x - 20sin^2x + 10 = 6

= \ \textgreater \  25sin^4x - 20sin^2x + 4 = 0

= \ \textgreater \  (5sin^2x - 2)^2 = 0

= > 5sin^2x = 2

= > sin^2x = 2/5.


Then,

cos^2x = 1 - sin^2x

             = 1 - (2/5)

             = 3/5.



Now,

=  >tan^2x = sin^2x/cos^2x

                  = (2/5) * (5/3)

                  = 2/3.



Now,

= \ \textgreater \   \frac{sin^8x}{8} +  \frac{cos^8}{27}

= \ \textgreater \   \frac{(sin^2)^4x}{8} +  \frac{(cos^2x)^4}{27}

= \ \textgreater \   \frac{( \frac{2}{5})^4 }{8} +  \frac{( \frac{3}{5})^4 }{27}

= \ \textgreater \   \frac{ \frac{16}{625} }{8} +  \frac{ \frac{81}{625} }{27}

= \ \textgreater \   \frac{16}{5000} +  \frac{16}{16875}

= \ \textgreater \   \frac{5}{625}

= \ \textgreater \   \frac{1}{125}



Therefore, Option(A), Option(B) are correct.


Hope this helps!

siddhartharao77: :-)
siddhartharao77: Thank You Madam ji!
Adisha01: Thank u for the answer...
siddhartharao77: Welcome!
Similar questions