Math, asked by vaishali510, 11 months ago

plz answer the question ​

Attachments:

Answers

Answered by kaushik05
29

  \huge \green{\mathfrak{solution}}

 \frac{ {sec}^{2}(90 -  \theta) -  {cot}^{2}  \theta }{2( {sin}^{2} 45 +  {sin}^{2} 45) }  +  \frac{2 {sin}^{2}30 \:  {tan}^{2} 38  \:  {tan}^{2}  52 }{3( {sec}^{2} 43 -  {cot}^{2} \: 47) }   \\  \implies \frac{ {cosec}^{2} \theta -  {cot}^{2}  \theta }{2( {sin}^{2} 45 +  {sin}^{2}(90 - 45) }  +  \frac{2 {sin}^{2} 30 {tan}^{2}(90 - 52) {tan}^{2}52  }{3( {sec}^{2}(90 - 47) -  {cot}^{2} 47 }  \\  \implies \:  \frac{1}{2( {sin}^{2}45 +  {cos}^{2}45)  }  +  \frac{2 {sin}^{2} 30 \:  {cot}^{2} 52 \:  {tan}^{2}52 }{3( {cosec}^{2} 47 -  {cot}^{2} 47)} \\   \implies \frac{1}{2(1)}  +  \frac{2 \times ( \frac{ {1}^{2} }{ {2}^{2} } )}{3(1)}  \\  \\  \implies \frac{1}{2}  +  \frac{1}{6}  \\  \\  \implies \frac{3 + 1}{6}  \\  \\  \implies \frac{4}{6}  =  \frac{2}{3}

Formula

sin (90-@)=cos @

sin^2@+cos^@=1

csc^2@-cot^2@=1

sec(90-@)=csc@

Similar questions