Math, asked by akifsiddique778, 9 months ago

plz answer the question. ​

Attachments:

Answers

Answered by BrainlyConqueror0901
10

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \red{\underline \bold{To \: Prove:}} \\  \tt: \implies  \frac{1 -  {tan}^{2}  \: \theta}{ {cot}^{2} \: \theta - 1 }  =  {tan}^{2} \:  \theta

• According to given question :

 \tt: \implies  \frac{1 -  {tan}^{2}  \: \theta}{ {cot}^{2} \: \theta - 1 }  =  {tan}^{2} \:  \theta  \\  \\ \bold{Solving \:L.H.S : } \\   \tt: \implies  \frac{1 -  {tan}^{2}  \: \theta}{ {cot}^{2} \: \theta - 1 }  \\   \\  \tt:  \implies  \frac{1 - ( {sec}^{2} \: \theta - 1) }{ {cot}^{2}  \:  \theta - (cosec^{2} \:  \theta -  {cot}^{2} \:  \theta )}  \\  \\ \tt:  \implies  \frac{1 -  {sec}^{2} \: \theta + 1 }{ {cot}^{2} \:  \theta -  {cosec}^{2} \:  \theta +  {cot}^{2} \:  \theta   }  \\  \\ \tt:  \implies \frac{ -  {sec}^{2} \:  \theta }{ - cosec^{2} \:  \theta }  \\  \\ \tt:  \implies \frac{ {sec}^{2} \:  \theta }{  cosec^{2} \:  \theta } \\  \\ \tt:  \implies \huge{\frac{  \frac{1}{ {cos}^{2} \:  \theta }  }{  \frac{1}{ {sin}^{2}  \:  \theta} }} \\  \\ \tt:  \implies  \frac{ {sin}^{2}  \:  \theta}{ {cos }^{2} \: \theta }  \\  \\ \tt:  \implies  {tan}^{2}  \:  \theta \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \green{\tt{L.H.S = R.H.S}} \\  \\    \:  \:  \:  \: \red{\huge{ \bold{Proved }}}

Answered by Saby123
1

 \tt{\huge{\orange {Hello!!! }}} B.Q

QUESTION :

 Prove \: That \: :- \dfrac{1 - {tan { \phi }}^2 } { { cot{ \phi} ^2 } - 1 } = {tan {\phi } }^2

SOLUTION :

LHS :

 \tt{\purple{\leadsto{ \dfrac{1 - {tan { \phi }}^2 } { { cot{ \phi} ^2 } - 1 } }}}

 \tt{\orange{\leadsto{ \dfrac{1 - { \dfrac{ sin { \phi } } { cos { \phi }} }^2 } { { \dfrac{ cos { \phi }} {sin { \phi}}}^2  - 1 } }}}

Take LCM and cancel the Numerator Sin ^2 Phi - Cos ^ Phi

 \tt{\green{\leadsto{ { \dfrac { sin { \phi }} { cos { \phi }}}^2 }}}

 \tt{\red{\leadsto { {tan {\phi } }^2 }}}

LHS = RHS

HENCE PROVED.....

Similar questions