CBSE BOARD X, asked by pragatisharma498894, 1 month ago

Plz answer the question ​

Attachments:

Answers

Answered by tennetiraj86
2

Explanation:

Given :-

Sin θ = a/b

To find :-

Prove that Sec θ + Tan θ = √[(b+a)/(b-a)] .

Solution :-

Method -1:-

Given that :-

Sin θ = a/b

On squaring both sides then

=> (Sin θ)² = (a/b)²

=> Sin² θ = a²/b²

On Subtracting above equation from 1 then

=> 1 - Sin² θ = 1-(a²/b²)

=> Cos² θ = (b²-a²)/b²

Since Sin² A + Cos² A = 1

=> 1/ Cos² θ = b²/(b²-a²)

=> Sec² θ = b²/(b²-a²)

=> Sec θ = √[b²/(b²-a²)]

=> Sec θ = b/√(b²-a²) ---------------(1)

We have

Sec² θ = b²/(b²-a²)

On subtracting 1 both sides then

=> Sec² θ - 1 = [b²/(b²-a²)] - 1

=> Tan² θ = [ {b²-(b²-a²)}/(b²-a²)]

Since Sec² A - Tan² A = 1

=> Tan² θ = [(b²-b²+a²)/(b²-a²)]

=>Tan² θ = a²/(b²-a²)

=> Tan θ = √[a²/(b²-a²)]

=> Tan θ = a/√(b²-a²) --------------(2)

On adding (1)&(2) then

Sec θ + Tan θ = [b/√(b²-a²)] + [a/√(b²-a²)]

=> Sec θ + Tan θ = [(b+a)/√(b²-a²)]

=> Sec θ + Tan θ = √[(b+a)(b+a)/(b²-a²)]

=> Sec θ + Tan θ = √[(b+a)(b+a)/(b+a)(b-a)]

Since (x+y)(x-y) = x²-y²

Where , x = b and y = a

On cancelling (b+a) then

=> Sec θ + Tan θ = √[(b+a)/(b-a)]

Hence, Proved.

Method -2:-

Given that

Sin θ = a/b

LHS = Sec θ + Tan θ

=>(1/Cos θ) + (Sin θ/ Cos θ)

=> (1+Sin θ)/Cos θ

We know that

Sin² A + Cos² A = 1

=> Cos² A = 1-Sin² A

=> Cos A =√(1-Sin² A)

LHS = (1+Sin θ)/√(1- Sin² θ)

=> LHS = [1+(a/b)]/√[1-(a/b)²]

=> LHS = [(b+a)/b]/√(1-(a²/b²))

=> LHS = [(b+a)/b]/√[(b²-a²)/b²]

=> LHS = [(b+a)/b]/√(b²-a²)/b]

=> LHS = (b+a)/√(b²-a²)

=> LHS = √[(b+a)(b+a)/(b²-a²)]

=> LHS = √[(b+a)(b+a)/(b+a)(b-a)]

Since (x+y)(x-y) = x²-y²

Where , x = b and y = a

On cancelling (b+a) then

=> LHS = √[(b+a)/(b-a)]

=> RHS

=> LHS = RHS

Sec θ + Tan θ = √[(b+a)/(b-a)]

Hence, Proved.

Answer:-

If Sinθ=a/b then Secθ+Tanθ=√[(b+a)/(b-a)]

Used Identities :-

  • Sin² A + Cos² A = 1
  • Sec² A - Tan² A = 1

Used formulae:-

  • (x+y)(x-y) = x²-y²
  • Sec A = 1/Cos A
  • Tan A = Sin A/Cos A
Similar questions