Math, asked by mateen786786, 11 months ago

plz answer the question correctly​

Attachments:

Answers

Answered by tahseen619
3

Step-by-step explanation:

{\underline{{\text{Given}}}}

 \cot \theta \: =   \dfrac{b}{a}

{\underline{{\text{To Find:}}}}

 \dfrac{ \cos \theta + \sin \theta}{ \sin \theta  -  \cos \theta}

{\underline{{\text{Solution:}}}}

As We know,

 \cot \theta \:   = \dfrac{ \cos \theta}{ \sin \theta }

 \therefore \:  \dfrac{ \cos \theta}{ \sin \theta }  =  \dfrac{b}{a}  \\  \\ \text{[Applying componendo and dividendo ]}</p><p> \\ \\  \dfrac{ \cos \theta + \sin  \theta  }{ \sin \theta  -  \sin \theta } =  \dfrac{b + a}{b - a}

Hence, the required answer is \dfrac{b + a}{b - a}

{\underline{{\text{ Some Important Trigonometry Rule }}}}

sinø . cosecø = 1

cosø . secø = 1

tanø . cotø = 1

sin²ø + cos²ø = 1

cosec²ø - cot² = 1

sec²ø - tan²ø = 1

Answered by jainaarushi
1

Answer:

b/a..

Step-by-step explanation:

Method 1:

you can use componando and dividendo as in:

for example: a+b\a-b it can be written as a+b+a-b/a+b-a+b=2a/2b=a/b

similarly, cos α+ sin α/cos α-sin α

it would be equal to cos α/sin α=cot α=b/a

Method 2:

cot α=b/a i.e base/perpendicular

we can find hypoteneus by pythagorus thoerem hy=√a²+b²

we can write sin α=a/√a²+b²

and cos α=b/√a²+b²

substitute this you will get the answer...

Similar questions