Math, asked by mateen786786, 10 months ago

plz answer the question correctly​

Attachments:

Answers

Answered by sumitprakash150802
0

Answer:

1/3

Step-by-step explanation:

2.3^{x}=1000\\ 2.3=1000^{1/x} \\...........eq1

0.23^{y} =1000\\0.23=1000^{1/y}.........eq2

now, divide these two equation.

2.3/0.23=1000^{1/x}/1000^{1/y}  \\10=1000^{(1/x)-(1/y)}\\10=10^{3{(1/x)-(1/y)]}

1 = 3(1/x)-(1/y)

so, (1/x) -(1/y) =1/3

Answered by tahseen619
6

Answer:

 \dfrac{1}{3}

Step-by-step explanation:

{\underline{{\text{Given}}}}

 {(2.3)}^{x}  = {(0.23)}^{y}  = 1000

{\underline{{\text{To Find:}}}}

 \dfrac{1}{x}  -  \dfrac{1}{y}

{\underline{{\text{Solution:}}}}

{(2.3)}^{x}  = 1000 \\  \\ 2.3 =  {1000}^{ \frac{1}{x} } .....(1)

Again,

 {(0.23)}^{y}  = 1000 \\  \\ 0.23 =  {1000}^{ \frac{1}{y} } .....(2)

Now,

Dividing (1) by (2)

 \frac{2.3}{0.23}  =  \frac{( {1000)}^{   \frac{1}{x}   } }{ {(1000)}^{ \frac{1}{y} } }  \\  \\  \frac{10}{10}  \times  \frac{2.3}{0.23}  =  {(1000)}^{( \frac{1}{x} -  \frac{1}{y})  }  \\  \\ 10 \times  \frac{2.3}{2.3}  = ( {10}^{3})^{ (\frac{1}{x}  -  \frac{1}{y}) }  \\  \\ 10 =  {10}^{3( \frac{1}{x}  -  \frac{1}{y}) }  \\  \\  [\text{Cancelling the 10 from both side}] \\  \\ 1 = 3( \frac{1}{x}  -  \frac{1}{y} ) \\  \\  \frac{1}{3}  =  \frac{1}{x}  -  \frac{1}{y}

Hence the required answer is 1/3 .

{\underline{{\text{ Some Important Laws of Indices}}}}

{a}^{n}.{a}^{m}={a}^{(n + m)}

{a}^{-1}=\dfrac{1}{a}

\dfrac{{a}^{n}}{ {a}^{m}}={a}^{(n-m)}

{({a}^{c})}^{b}={a}^{b\times c}={a}^{bc}

 {a}^{\frac{1}{x}}=\sqrt[x]{a}

</p><p>[\text{where all variables are real and greater than 0}]

Similar questions