Math, asked by kumardeepak258369, 2 months ago

plz answer the question I need your help


1.
Evaluate: (6-1-8-1-1+(2-1-3-1)-1​

Attachments:

Answers

Answered by gururamya431
0

Answer:

30

answer is 30

I think you are satisfied with this

Answered by 12thpáìn
135

Evaluate:

\sf{~~~~~:\implies ( {6}^{ - 1}  -  {8}^{ - 1} )^{ - 1}  + ( {2}^{ - 1}  -  {3}^{ - 1} ) ^{ - 1} }

\sf{~~~~~:\implies \left(  \dfrac{1}{6}   -   \dfrac{1}{8}  \right)^{ - 1}  + \left(  \dfrac{1}{2}   -  \dfrac{1}{3}  \right)^{ - 1} }

\sf{~~~~~:\implies \left(  \dfrac{4 - 3}{24} \right)^{ - 1}  + \left(  \dfrac{3 - 2}{6}     \right) ^{ - 1}  }

\sf{~~~~~:\implies \left(  \dfrac{1}{24}  \right)^{ - 1}  + \left(  \dfrac{1}{6}     \right) ^{ - 1}  }

\sf{~~~~~:\implies 24  + 6  }

\bf{~~~~~:\implies 30 }\\

Laws of Exponents

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} \: \: \: \: \: \: \: \: \: \: \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n} \\ \: \: \: \: \sf{\bigstar( {a}^{m} ) ^{n} = {a}^{mn} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bigstar a {}^{m} \times {n}^{m} = (ab) ^{m} } \: \: \: \:\\ \: \: \sf\bigstar{a}^{0} = 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: {\bigstar\frac{ {a}^{m} }{ {b}^{m} }= \left( \frac{a}{b} \right) ^{m} } \: \: \: \: \: \: \: \:\\\\\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions