Math, asked by akifsiddique778, 9 months ago

plz answer the question in factorization method. question (v)​

Attachments:

Answers

Answered by hrn21agmailcom
0

Answer:

-7 & 6/7

Step-by-step explanation:

let (3x-1)/(2x+3) = y.......(1)

now the given equatíon....

3y -2/y = 5

3y^2 - 2 = 5y

3y^2 - 5y - 2 = 0

upon solving...

y = 2 & y = -1/3

now put in (1)

(3x-1)/(2x+3) = 2 ; (3x-1)/(2x+3) = -1/3

solving these we get....

x = -7 & x = 6/7

Answered by Cynefin
8

  \large{ \red{ \bold{ \underline{ \underline{Question....}}}}}

 \large{ \sf{factorize \:  \:   3( \frac{3x - 1}{2x + 3})  - 2( \frac{2x + 3}{3x - 1} ) = 5}}

 \large{ \bold{ \green{ \underline{ \underline{answer...}}}}}

x= 0 or -7

 \large{ \red{ \bold{ \underline{ \underline{Solution...}}}}}

 \large{ \sf{ \to \: we \: can \: observe \: that \: the \: terms}} \\  \large{ \sf{in \: lhs \: are \: reciprocal \: of \: each \: other}} \\  \large{ \sf{so \: we \: will \: apply \: this...}} \\  \\  \large{ \sf{ \to let \:  \frac{3x - 1}{2x + 3} \:  be \:   \: \red{a}}} \\  \large{ \sf{ \to \: then \:  \frac{2x + 3}{3x - 1}  =  \frac{1}{a} }} \\  \\  \large{ \sf{ \to \: 3a -  \frac{2}{a}  = 5(polynomial \: now...)}} \\  \\  \large{ \sf{ \to \:  \frac{3 {a}^{2} - 2 }{a}  = 5}} \\  \\  \large{ \sf{ \to \: 3 {a}^{2}  - 5a - 2 = 0}} \\  \\  \large{ \sf{ \to \: 3 {a}^{2} - 6a + a - 2 = 0}} \\  \\  \large{ \sf{ \to \: 3a(a - 2) + 1(a - 2) = 0}} \\  \\  \large{ \sf{ \to \: (3a + 1)(a - 2) = 0}} \\  \\  \large{ \sf{ \green{ \to \: then \: a =  \frac{ - 1}{3}  or \: 2}}}

 \large{ \sf{ \: so \: now...there \: are \: two \: cases...}} \\  \\  \red{ \bold{ \underline{case = 1)}}} \:  \large{ \sf{  \frac{3x  -  1}{2x + 3}  =  \frac{ - 1}{3} }} \\  \\  \large{ \sf{  \to \:  - 2x - 3 = 9x - 3}}(cross \: multiplication) \\  \\  \large{ \sf{ \to \:  - 2x - 9x =  - 3 + 3}} \\  \\  \large{ \sf{ \to \:  - 11x = 0}} \\  \\  \large{ \sf{ \red{ \to \: x = 0} \blue{(ans - (1))}}} \\  \\  \red{ \bold{ \underline{case = 2)}}} \large{ \sf{ \frac{3x - 1}{2x + 3}  = 2}} \\  \\  \large{ \sf{ \to \: 3x - 1 = 4x + 6}} \\  \\  \large{ \sf{ \to \: 3x - 4x = 6 + 1}} \\  \\  \large{ \sf{ \to \:  - x = 7}} \\  \\  \large{ \sf{ \red{ \to \: x =  - 7} (\blue{ans - (2))}}}

 \large{ \bold{ \purple{required \: answer(x = 0 \: or \:  - 7)}}}

Similar questions