Math, asked by vishu126191, 9 hours ago

plz answer the question step by step​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 f(x) =  \bigg \{ { \frac{1 -  \cos(4x) }{8 {x}^{2}  } ,x \not = 0  \atop{k ,  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = 0 }} \\

Since, it is continuous at x=0,

 \lim_{x \rarr0} \frac{1 -  \cos(4x) }{8 {x}^{2} }  = k \\

 \implies \lim_{x \rarr0} \frac{2  \sin^{2} (2x) }{8 {x}^{2} }  = k \\

 \implies \lim_{x \rarr0} \frac{  \sin^{2} (2x) }{4 {x}^{2} }  = k \\

 \implies \lim_{2x \rarr0} \frac{  \sin^{2} (2x) }{ {(2x)}^{2} }  = k \\

 \implies  k =1 \\

Similar questions