Math, asked by kalpitadebkrori054, 11 months ago

plz answer the questions that are ticked marked, plz plz plz.!!​

Attachments:

Answers

Answered by Sharad001
44

Question :-

Prove that ,

 \mathfrak{ \sqrt{ \frac{1 -  \cos \: \theta}{1 +  \cos \:  \theta} }  =  \csc \:  \theta \:   - \cot \:  \theta} \\

Formula used :-

 \star \: 1 -  { \cos}^{2}  \theta =  { \sin}^{2}  \theta \:  \\  \\  \star \:  \frac{1}{ \sin \:  \theta}  =  \csc \:  \theta \\  \\  \star \:  \frac{ \cos \:  \theta}{ \sin \:  \theta}  =  \cot \:  \theta

Solution :-

Taking Left hand side (LHS)

 \rightarrow \: \sqrt{ \frac{1 -  \cos \: \theta}{1 +  \cos \:  \theta} } \:  \\   \\ \sf{rationalising \: by \:  \sqrt{1 -  \cos \:  \theta} } \\  \\  \rightarrow \:  \sqrt{ \frac{1 -  \cos \: \theta}{1 +  \cos \:  \theta} } \times  \sqrt{ \frac{1 -  \cos \:  \theta}{1 -  \cos \:  \theta} }  \\  \\  \rightarrow \:  \sqrt{ \frac{ {(1 -  \cos \:   \theta)}^{2} }{(1 +  \cos \:  \theta)(1 -  \cos \:  \theta)} }  \\  \\  \rightarrow \:  \sqrt{ \frac{ {(1  -  \cos \:  \theta)}^{2} }{1 -  { \cos}^{2}  \theta} }  \\  \\  \rightarrow \:  \sqrt{ \frac{ {(1 -  \cos \:  \theta)}^{2} }{ {  \sin}^{2}  \theta \: } }  \\  \\  \rightarrow \:  \sqrt{ { \bigg( \frac{1 -  \cos \:  \theta}{ \sin \:  \theta}  \bigg)}^{2} }  \\  \\  \rightarrow \:  \frac{1}{ \sin \:  \theta}  -  \frac{ \cos \:  \theta}{ \sin \:  \theta}  \\  \\  \rightarrow \:  \csc \:  \theta \:  -  \cot \:  \theta \:

LHS = RHS

hence prove .

________________________________

Similar questions