Math, asked by KARTIK4937437, 1 year ago

plz answer these 2 question with full explanation​

Attachments:

Answers

Answered by Anonymous
1

Answer:

Q1. The ans is 34 the solution photo is above

2.ans is 8

Attachments:
Answered by LovelyG
12

Question: If x = 3 - 2√2, find x² + 1/x².

Answer:

\large{\underline{\boxed{\sf x {}^{2}  +  \frac{1}{x {}^{2} }  = 34}}}

Step-by-step explanation:

\sf x = 3 - 2 \sqrt{2}  \\  \\ \implies \sf  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \\  \\ \implies \sf   \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\ \implies \sf   \frac{3 + 2 \sqrt{2} }{(3) {}^{2}  - (2 \sqrt{2} ) {}^{2} }  \\  \\ \implies \sf   \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\ \implies \sf   \frac{1}{x}  = 3 + 2 \sqrt{2}

Now, find x + 1/x -

 \small \implies \sf  x +  \frac{1}{x}  = 3 - 2 \sqrt{2}  + 3 + 2 \sqrt{2}  \\  \\ \implies \sf x +  \frac{1}{x}   = 3 + 3 \\  \\ \implies \sf  x +  \frac{1}{x}  = 6 \\  \\ \bf on \: squaring \: both \: sides -  \\  \\ \implies \sf  (x +  \frac{1}{x} ) {}^{2}  = (6) {}^{2}  \\  \\ \implies \sf  x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 = 36 \\  \\ \implies \sf  x {}^{2}  +  \frac{1}{x {}^{2} }  = 36 - 2 \\  \\ \boxed{ \bf  x {}^{2}  +  \frac{1}{x {}^{2} }  = 34}

Hence, the answer is 34.

______________________________

Question: If x = 1 - √2 , find (x - 1/x)³.

Answer:

\large{\underline{\boxed{\sf (x -  \frac{1}{x}) {}^{3}   =8}}}

Step-by-step explanation:

 \sf x = 1 -  \sqrt{2}  \\  \\ \implies \sf   \frac{1}{x}  =  \frac{1}{1 -  \sqrt{2} }  \\  \\ \implies \sf  \frac{1}{x}  =  \frac{1}{ 1 -  \sqrt{2}}  \times  \frac{1 +  \sqrt{2} }{1 +  \sqrt{2} }  \\  \\ \implies \sf  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{(1) {}^{2}  - ( \sqrt{2}) {}^{2}  }  \\  \\ \implies \sf  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{1 - 2}  \\  \\ \implies \sf  \frac{1}{x}  =  \frac{1 +  \sqrt{2} }{ - 1} \\  \\ \implies \sf  \frac{1}{x}  =   - (1 +  \sqrt{2} )

Now, find (x - 1/x) -

\implies \sf  x -  \frac{1}{x}  = 1 -  \sqrt{2}   + 1 +  \sqrt{2}  \\  \\ \implies \sf  x -  \frac{1}{x}  = 1 + 1 \\  \\ \implies \sf  x -  \frac{1}{x}  = 2 \\  \\ \bf on \: cubing \: both \: sides -  \\  \\ \implies \sf  (x -  \frac{1}{x}) {}^{3}   = (2) {}^{3}  \\  \\  \underline{ \boxed{\bf  (x -  \frac{1}{x}) {}^{3}   =8}}

Similar questions