Math, asked by himanshi9788, 9 months ago

plz answer these question​

Attachments:

Answers

Answered by Abhishek474241
4

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

x= 3 + 2√2

{\sf{\green{\underline{\large{To\:find}}}}}

\implies\tt{X^2+\dfrac{1}{X^2}}

\tt{X^3+\dfrac{1}{X^3}}\\\\{\sqrt{x}+\dfrac{1}{\sqrt{x}}}

{\sf{\pink{\underline{\Large{Explanation}}}}}

x=3+2√2

Now 1/x

  • Rationalize it

\tt\rightarrow{\dfrac{1}{x}=\dfrac{1}{3+2\sqrt{2}}}

\tt\rightarrow{\dfrac{1}{x}=\dfrac{1}{3+2\sqrt{2}}\times\dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}}

=>1/x = 3-2√2 / 9-8

=>1/x = 3-2√2 / 1

Now adding

=>x + 1/x =3-2√2+3+2√2

=>x + 1/x =6

We know that

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=6

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(6)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}=36

\implies\tt{36=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{36=X^2+\dfrac{1}{X^2}+2}

\implies\tt{36-2=X^2+\dfrac{1}{X^2}}

\implies\tt{34=X^2+\dfrac{1}{X^2}}

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

utting value

\implies\tt{X^3+\dfrac{1}{X^3}={6}(34-1)}

\implies\tt{X^3+\dfrac{1}{X^3}={6}(33)}

\implies\tt{X^3+\dfrac{1}{X^3}={198}}

Now

\tt{\sqrt{x}+\dfrac{1}{\sqrt{x}}}

Both side squaring

\tt{\sqrt{x}+\dfrac{1}{\sqrt{x}}}=x + 1/x + 2

=>√x + 1/√x = 6 +2

=>√x + 1/√x = 8

Similar questions