Math, asked by Godwin0108, 1 year ago

Plz answer This.................. :)

Attachments:

Answers

Answered by MOSFET01
9
\bold{\underline{Hey\: Mate\: !}}

\bold{\underline{Revise \:formula \:\colon}}

------------------------------------------------------------------------------------------------------------------

\bold{x^{3} - y^{3} = (x-y)[x^{2} + xy + y^{2}]}

------------------------------------------------------------------------------------------------------------------

1)\:\bold{\large{\frac{987\times987\times987\: + 357\times 357\times357}{987\times987 \: + \: 987\times357 + 357\times 357}}}

General exponential function :

1)\:\bold{\large{\frac{987^{3}\: - \:357^{3}}{987^{2} \: + 987 \times 357 \: +\: 357^{2}}}}

Let ,

a = 987

b = 357

\implies \frac{a^{3} \: - \: b^{3}}{a^{2} \: +\: ab \: + b^{2}}

 \implies \frac{ (a \: - \: b)(a^{2} + ab + b^{2} )}{(a^{2} + ab + b^{2})}

We are getting this equation now substitute it :

 \implies \frac{ (a \: - \: b)\cancel{(a^{2} + ab + b^{2} )}}{\cancel{(a^{2} + ab + b^{2})}}

After substitution we get

\implies [ a \: - \: b ]

Put the value of a & b

\implies [987 \: - \:357]

\bold{\boxed{ Answer = 630}}

------------------------------------------------------------------------------------------------------------------

That means option \:\bold{(C)} is correct.

------------------------------------------------------------------------------------------------------------------

\bold{Thanks}

astha1917: gajb ._. coconut
MOSFET01: :-)
Similar questions