Math, asked by rochan84, 5 months ago

plz answer this
can you help me fast

Attachments:

Answers

Answered by VishnuPriya2801
15

Question:-

If

  \sf\dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  = a + b \sqrt{6}

then (a , b) =

Answer:-

Given:

 \:\sf\dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  = a + b \sqrt{6}

Multiplying numerator and denominator by 3 + 2 & 3 + 2 in LHS we get,

 \implies\sf\dfrac{ (\sqrt{3} +  \sqrt{2} )( \sqrt{3} +  \sqrt{2}  ) }{ (\sqrt{3}  -  \sqrt{2} )( \sqrt{3}  +  \sqrt{2} )}  = a + b \sqrt{6}  \\

using -

  • (a + b)(a + b) = (a + b)² = + + 2ab

  • (a - b)(a + b) = -

we get,

  \implies \sf \:  \dfrac{( \sqrt{3}) ^{2}  +  {( \sqrt{2} )}^{2}   + 2 \times  \sqrt{3}  \times  \sqrt{2} }{( \sqrt{3} )  ^{2} -  {( \sqrt{2}) }^{2}  }  = a + b \sqrt{6}  \\\\  \\ \implies \sf \:  \dfrac{3  +  2  + 2 \times  \sqrt{6}  }{( \sqrt{3} )  ^{2} -  {( \sqrt{2}) }^{2}  }  = a + b \sqrt{6} \\\\  \\  \implies \sf \dfrac{5 + 2 \sqrt{6} } {3 - 2} = a + b \sqrt{6}  \\  \\\\ \implies \boxed{\sf \: a + b \sqrt{6}  = 5 + 2 \sqrt{6} }

In comparison of both sides we get,

  • a = 5
  • b = 2.

(a , b) = (5 , 2)

Similar questions