Math, asked by nnagababu726pb8ss4, 11 months ago

plz answer this guys​

Attachments:

Answers

Answered by rishu6845
7

Answer:

2 a - 3 a = - 1

Step-by-step explanation:

Given----> aₙ = Cosⁿα + Sinⁿα

To find ----> Value of ( 2 a₆ - 3 a₄ )

Concept used ---->

1)

( \:  {a}^{3} \:   +  \:  {b}^{3} \: )  \: = ( \: a \:  +  \: b \: ) \: ( \:  {a}^{2} \:  +  {b}^{2} \:  -  \: ab \: )

2)

( \: a \:  +  \: b \: ) ^{2} \:  =  \:  {a}^{2}  \:  +  \:  {b}^{2} \:  +  \: 2ab

3)

 {sin}^{2} \alpha  \:  + \:  \:  {cos}^{2} \alpha    =  \: 1

Solution-----> ATQ,

aₙ = Cosⁿα + Sinⁿα

a₆ = Cos⁶α + Sin⁶α

= ( Cos²α )³ + ( Sin²α )³

= ( Cos²α + Sin²α ) { ( Cos²α )² + ( Sin²α )² - Cos²α Sin²α }

= ( 1 ) { ( Cos²α )² + ( Sin²α )² + 2 Sin²α Cos²α - 3 Sin²α Cos²α }

= ( Cos²α + Sin²α )² - 3 Sin²α Cos²α

= ( 1 )² - 3 Sin²α Cos²α

= 1 - 3 Sin²α Cos²α

Now ,

a₄ = Cos⁴α + Sin⁴α

= ( Cos²α )² + ( Sin²α )² + 2 Sin²α Cos²α

- 2 Sin²α Cos²α

= ( Cos²α + Sin²α )² - 2 Sin²α Cos²α

= ( 1 )² - 2 Sin²α Cos²α

= 1 - 2 Sin²α Cos²α

Now, 2 a₆ - 3 a₄

=2 \: ( \: 1 \:  - 3 \ {sin}^{2} \alpha  \:  {cos}^{2} \alpha  \: ) \:  - 3 \: ( \: 1 - 2  \: {sin}^{2} \alpha  \:  {cos}^{2} \alpha )

 = 2 \:  -  \: 6 {sin}^{2} \alpha  \:  {cos}^{2} \alpha  \:  - 3 \:  +  \: 6 \:  {sin}^{2} \alpha  \:  {cos}^{2} \alpha

=2 \:  -  \: 3

 =  -  \: 1

Answered by Anonymous
0

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions