plz answer this maths problem step by step
Attachments:
Answers
Answered by
2
Question:
If x² - 1/x² = 2, then find x² + 1/x² and x + 1/x.
Solution:
x² - 1/x² = 2
=> x² + (- 1/x²) = 2
=> x² + (i/x)² = 2
x² + (i/x)² + (2 · x · i/x) = 2 + (2 · x · i/x))
=> (x + i/x)² = 2 + 2i
=> x + i/x = √(2 + 2i) → (1)
x² + (i/x)² - (2 · x · i/x) = 2 - (2 · x · i/x))
=> (x - i/x)² = 2 - 2i
=> x - i/x = √(2 - 2i) → (2)
Multiplying (1) and (2),
(x + i/x)(x - i/x) = (√(2 + 2i))(√(2 - 2i))
=> x² - (- 1/x²) = √[(2 + 2i)(2 - 2i)]
=> x² + 1/x² = √[4 - (- 4)]
=> x² + 1/x² = √8
=> x² + 1/x² = 2√2
x² + 1/x² + 2 = 2√2 + 2
=> (x + 1/x)² = 2(√2 + 1)
=> x + 1/x = √[2(√2 + 1)]
=> x + 1/x = √2 · √(√2 + 1)
Hence found!
Note that i = √(-1).
Similar questions