Math, asked by Diana20, 10 months ago

plz answer this nowwwwwwwwww

Attachments:

Answers

Answered by TRISHNADEVI
2

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION\:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given,  \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \huge{ \text{  \red{a = 30 \degree}}} \\  \\  \underline{ \mathfrak{ \:  \: To \:  \:  find : \: }} \\  \\  \huge{ \text{ \red{ The  value of x = ? \: }}}

 \underline{  \mathfrak{ \:  \: We  \:  \: know \:  \:  that, \:  \: }} \\  \\   \red{ \text{</p><p>The sum of the three angles of a triangle}} \\  \red{ \text{ is equal to 180  \degree}.}

 \mathfrak{So,} \\  \:  \:  \:  \:  \:  \:  \underline{ \text{ \: In the  diagram, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{3x + 2x + a = 180 \degree} \\   \\ \tt{ \implies \:3x + 2x + 30 \degree \:   = 180 \degree} \\  \\   \tt{ \implies \: 5x = 180 \degree  - 30 \degree} \\  \\  \tt{ \implies \: 5x = 150 \degree} \\  \\  \tt{ \implies \: x =  \frac{150 \degree}{5}}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \therefore \:  \:   \underline{\red{ \:  \:  \:  \: x = 30 \degree} \:  \: }}

 \mathfrak{Hence, } \\  \\  \tt{ :  \leadsto \:  \: 3x = 3 \times  \red{30} \degree = 90 \degree} \\  \\  \tt{ :  \leadsto \:  \: 2x = 2 \times  \red{30} \degree = 60 \degree}

Answered by Pricilla
3

 \huge{ \underline{ \overline{ \mid{ \mathcal{ \purple{ \:   \: SOLUTION\:  \: } \mid}}}}}

 \underline{ \bf{ \:  \: Given,  \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \huge{ \text{a = 30 \degree}} \\  \\  \underline{ \bf{ \:  \: To \:  \:  find : \: }} \\  \\  \huge{ \text{The  value of x = ? \: }}

 \underline{  \bf{ \:  \: We  \:  \: know \:  \:  that, \:  \: }} \\  \\   \green{ \text{</p><p>The sum of the three angles of a triangle}} \\  \green{ \text{ is equal to 180  \degree}.}

 \bf{So,} \\  \:  \:  \:  \:  \:  \:  \underline{ \text{ \: In the  diagram, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{3x + 2x + a = 180 \degree} \\   \\ \sf{ \rightarrow \:3x + 2x + 30 \degree \:   = 180 \degree} \\  \\   \sf{ \rightarrow \: 5x = 180 \degree  - 30 \degree} \\  \\  \sf{ \rightarrow\: 5x = 150 \degree} \\  \\  \sf{ \rightarrow \: x =  \frac{150 \degree}{5}}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \therefore \:  \:   \underline{\pink{ \:  \:  \:  \: x = 30 \degree} \:  \: }}

Similar questions