Math, asked by pankajmathur6810, 1 year ago

plz answer this ques

Attachments:

Answers

Answered by IamIronMan0
0

Answer:

Take lcm

 \frac{ \sqrt{ \sec(x) - 1 } }{\sqrt{ \sec(x)  + 1 } }  +  \frac{ \sqrt{ \sec(x)  +  1 } }{\sqrt{ \sec(x) - 1 } } \\  \\  =  \frac{ (\sqrt{ \sec(x) - 1 }) {}^{2}   + ( \sqrt{ \sec(x)  + 1 })   {}^{2} }{\sqrt{ \sec(x) - 1 } \sqrt{ \sec(x) + 1 }  } \\   \\ square \:  \: and \:  \: roots \: cancels \: each \: out\\  \\  =  \frac{ \sec(x)  -  1 +  \sec(x) + 1 }{ \sqrt{ \sec {}^{2} (x) - 1 } }  \\  \\  =   \frac{2 \sec(x) }{ \sqrt{ \tan {}^{2} (x) } }  \\  \\  =  \frac{2 \sec(x) }{ \tan(x) }  \\  \\  =  \frac{ \frac{2}{ \cos(x) } }{ \frac{ \sin(x) }{ \cos(x) } }  \\  \\  =  \frac{2}{ \sin(x) }  \\  \\  = 2 \cosec(x)  \\  \\  = rhs

Similar questions