Math, asked by aparnarath, 9 months ago

plz answer this question​

Attachments:

Answers

Answered by Anonymous
153

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

\large{\underline{\underline{\mathfrak{\pink{\sf{Given\:Here:-}}}}}}.

\red{\frac{Sin\theta\:+\:Cos\theta}{Sin\theta\:-\:Cos\theta}\:+\frac{Sin\theta\:-\:Cos\theta}{Sin\theta\:+\:Cos\theta}}.

\large{\underline{\underline{\mathfrak{\pink{\sf{Explanation:-}}}}}}.

\implies\frac{(Sin\theta\:+\:Cos\theta)}{(Sin\theta\:-\:Cos\theta)}\:+\frac{(Sin\theta\:-\:Cos\theta)}{(Sin\theta\:+\:Cos\theta)}.

\implies\frac{(Sin\theta\:+\:Cost theta)^2\:+\:(Sin\theta\:-\:Cos\theta)^2}{(Sin\theta\:+\:Cos\theta)\:(Sin\theta\:-\:Cos\theta)}.

\implies\frac{(Sin^2\theta+Cos^2\theta+2Sin\theta\:Cos\theta)\:+\:(Sin^2\theta+Cos^2\theta-2Sin\theta\:Cos\theta)}{(Sin^2\theta\:-\:Cos^2\theta)}.

\implies\frac{2(Sin^2\theta\:+\:Cos^2\theta)}{(Sin^2\theta\:-\:Cos^2\theta)}.

We Know that .

\red{(\:Sin^2\theta\:+\:Cos^2\theta\:=\:0)}.

\red{(\:Sin^2\theta\:-\:Cos^2\theta)\:=\:Cos2\theta}.

\red{(\:Cos2\theta\:=\:2Cos^2\theta\:-\:1)}.

\red{(\:Cos2\theta\:=\:1\:-\:2Sin^2\theta)}.

➡So, Again,

We can write of above line

\implies\frac{2}{Cos2\theta}.

\implies\frac{2}{(2Cos^2\theta\:-\:1)}.

Or,

\implies\frac{2}{(\:1\:-\:2Sin^2\theta)}.

Here, both are We can write in answer .

So,

Final Answer will be Options Number (C).

____________________

<marquee direction> Follow

Answered by Vitthal01
0

Hi where are you

ur offline/online

good night sweet dream(◍•ᴗ•◍)(◍•ᴗ•◍)(◍•ᴗ•◍)(◍•ᴗ•◍)(◍•ᴗ•◍)(✯ᴗ✯)(✯ᴗ✯)(✯ᴗ✯)(✯ᴗ✯)(✯ᴗ✯)(◍•ᴗ•◍)(*´ω`*)(✯ᴗ✯)(✯ᴗ✯)(✯ᴗ✯)(✯ᴗ✯)(✷‿✷)(✷‿✷)(✷‿✷)(✷‿✷)

Attachments:
Similar questions