plz answer this question
Answers
Answer:
Step-by-step explanation:
in eq;
New eq has zeroes; and
α/β + β/α = α²+β²/ αβ
α/β * β/α = αβ/αβ = 1
(a² + b²) = (a+b)²-2ab
wkt; α+β = -4 .... squaring both sides
α²+β² = 10
∴ α²+β²/ αβ = 10/-3
New eq : K[x² - (sum of zeroes)x + (product of zeroes)]
= x² - (-10/3)x + 1 .... taking LCM
= (3x² + 10x + 3)/3
= 1/3 ( 3x² + 10x + 3)
Answer:
Step-by-step explanation:
For the equation X² + 4X - 3 = 0, the roots are ∝/β and β/∝
a=1, b=4, c= -3
∝+β = -b/a = -4/1 = -4 and ∝×β=∝β= c/a = -3/1 = -3
(∝+β)² = (∝+β)(∝+β)
(∝+β)² = ∝² + ∝β + ∝β + β²
(∝+β)² = ∝² + β² + 2∝β
(∝+β)² - 2∝β = ∝²+β²
The equation formula is : X² - (sum of roots)X + (product of roots) = 0
sum of roots = (∝/β) + (β/∝)
= (∝²+β²)/∝β
= [(∝+β)² - 2∝β) ]/∝β
= [(-4)² - 2(-3) ]/(-3)
= (16 + 6)/ -3
= 22/ -3
product of roots = (∝/β) × (β/∝)
= ∝β/∝β
= 1
∴ the equation = X² - (-22/3)X + 1 = 0
⇒ X² + (11/3)X + 1 = 0
⇒ 3X² + 22X + 3 = 0