Math, asked by 123laabi, 4 months ago

plz answer this question​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \lim _{x \rarr0 }  \frac{  \sqrt[3]{1 + x}  -  \sqrt[3]{1 - x}  }{x}  \\

\lim _{x \rarr0 } \frac{( \sqrt[3]{1 + x}  -  \sqrt[3]{1 - x})((1 + x)^{ \frac{2}{3} }  + (1 -  {x}^{2}) ^{  \frac{2}{3} }  + (1 - x)^{ \frac{2}{3} }  ) }{x((1 + x)^{ \frac{2}{3} } + (1 -  {x}^{2}) ^{ \frac{2}{3} }  + (1 - x)^{ \frac{2}{3} } )  }  \\

\lim _{x \rarr0 } \frac{( \sqrt[3]{1 + x} )^{3} - ( { \sqrt[3]{1 - x} })^{3} }{x((1 + x)^{ \frac{2}{3} }  + (1 -  {x}^{2} )^{ \frac{2}{3}} + (1 - x)^{ \frac{2}{3} }  )}  \\

\lim _{x \rarr0 } \frac{1 + x - 1 + x}{x((1 + x)^{ \frac{2}{3} } + (1 -  {x}^{2}  )^{ \frac{2}{3} }  + (1 - x)  ^ { \frac{2}{3} }) }  \\

\lim _{x \rarr0 } \frac{2x}{x((1  + x)^{ \frac{2}{3} } + (1 -  {x}^{2} ) ^{ \frac{2}{3} }  + (1 - x)^{ \frac{2}{3} }  )}  \\

\lim _{x \rarr0 } \frac{2}{(1 + x) ^{ \frac{2}{3} }  + (1 - x ^{2} )^{ \frac{2}{3} }  + (1 - x) ^{ \frac{2}{3} } }  \\

 =  \frac{2}{1 + 1 + 1}

 =  \frac{2}{3}

Similar questions