Math, asked by HarshitChamp, 1 year ago

plz answer this question

Attachments:

Answers

Answered by sivaprasath
1
Solution:

_____________________________________________________________

Given:

ax² + bx + c = 0,

α : β = m : n ,

_____________________________________________________________

Prove that :

=> mnb² = ac(m + n)²

_____________________________________________________________


As we know,


value of x =  \frac{-b +  \sqrt{b^2 - 4ac} }{2a} (or)  \frac{-b -  \sqrt{b^2 - 4ac} }{2a}

α =  \frac{-b +  \sqrt{b^2 - 4ac} }{2a}

β =  \frac{-b -  \sqrt{b^2 - 4ac} }{2a}

∴  m : n =  \frac{-b +  \sqrt{b^2 - 4ac} }{2a} :  \frac{-b -  \sqrt{b^2 - 4ac} }{2a}

Proof:

LHS = mnb²

=> ( \frac{-b + \sqrt{b^2 - 4ac} }{2a}) ( \frac{-b - \sqrt{b^2 - 4ac} }{2a})b^2

=> (  \frac{-b}{2a} +\frac{ \sqrt{b^2 - 4ac} }{2a})(  \frac{-b}{2a} -  \frac{- \sqrt{b^2 - 4ac} }{2a})b^2

We know that,

(a + b)(a - b) = a² - b²,

here,

we take

a =  \frac{-b}{2a}

&

b =  \frac{ \sqrt{b^2 - 4ac} }{2a}

______________

=> (( \frac{-b}{2a})^2 - ( \frac{ \sqrt{b^2 - 4ac} }{2a} )^2 ) b^2

=> ( \frac{b^2}{4a^2} -  \frac{b^2 - 4ac}{4a^2} ) b^2

=> ( \frac{b^2 - b^2 + 4ac}{4a^2} )b^2

=> ( \frac{4ac}{4a^2})b^2

=>  \frac{c}{a}(b^2)

=>  \frac{b^2c}{a} .........................

______________________________________

RHS = ac(m + n)²

=> ac( \frac{-b + \sqrt{b^2 - 4ac} }{2a} +  \frac{-b -  \sqrt{b^2 4ac} }{2a} )^2

=> ac( \frac{-b +  \sqrt{b^2 - 4ac  } -b -  \sqrt{b^2 - 4ac}  }{2a} )^2

=> ac( \frac{-2b}{2a})^2

=>ac( \frac{-b}{a} )

=> ac( \frac{b^2}{a^2} )

=>  \frac{b^2 c}{a}   .................

___________________________

LHS = RHS,

Hence proved,.

_____________________________________________________________

                                            Hope it Helps!!

=> Mark as Brainliest.


sivaprasath: No problem,.
Similar questions