Math, asked by simratgill1, 4 months ago

Plz answer this question​

Attachments:

Answers

Answered by sandeepbijli17
0

Answer:

please follow me and thanks me many time please jo muje follow kare ga he is a good man Or women

Answered by BrainlyKingdom
0

\sf{\displaystyle\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}}

\longrightarrow\sf{\displaystyle\sqrt{\frac{-\sqrt{3}+2}{\sqrt{3}+2}}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-\sqrt{3}+2}}{\sqrt{\sqrt{3}+2}}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-\sqrt{3}+2} \cdot \sqrt{\sqrt{3}+2}}{\sqrt{\sqrt{3}+2} \cdot \sqrt{\sqrt{3}+2}}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{(-\sqrt{3}+2)(\sqrt{3}+2)}}{\sqrt{(\sqrt{3}+2)(\sqrt{3}+2)}}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-\sqrt{3} \cdot \sqrt{3}-\sqrt{3} \cdot 2+2 \cdot \sqrt{3}+2 \cdot 2}}{\sqrt{(\sqrt{3}+2)^{1+1}}}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-\sqrt{3 \cdot 3}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}+4}}{\sqrt{(\sqrt{3}+2)^{2}}}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-\sqrt{3^{1+1}}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}+4}}{(\sqrt{3}+2)^{\frac{2}{2}}}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-\sqrt{3^{2}}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}+4}}{\sqrt{3}+2}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-3^{\frac{2}{2}}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}+4}}{\sqrt{3}+2}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-3-2 \cdot \sqrt{3}}+2 \cdot \sqrt{3}+4}{\sqrt{3}+2}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}-3+4}}{\sqrt{3}+2}}

\longrightarrow\sf{\displaystyle\frac{1}{\sqrt{3}+2}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{(\sqrt{3}+2)(\sqrt{3}-2)}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{\sqrt{3} \cdot \sqrt{3}-\sqrt{3} \cdot 2+2 \cdot \sqrt{3}-2 \cdot 2}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{\sqrt{3 \cdot 3}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}-4}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{\sqrt{3^{1+1}}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}-4}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{\sqrt{3^{2}}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}-4}}

\longrightarrow\sf{\displaystyle\frac{\sqrt{3}-2}{3^{\frac{2}{2}}-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}-4}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{3-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}-4}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{-2 \cdot \sqrt{3}+2 \cdot \sqrt{3}+3-4}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{3-4}}

\longrightarrow\sf{\displaystyle \frac{\sqrt{3}-2}{-1}}

\longrightarrow\sf{\displaystyle- \frac{\sqrt{3}-2}{1}}

\longrightarrow\sf{-(\sqrt{3}-2)}

➤ Substitute the value of  \sf{\sqrt{3}}

  • As it is Given \sf{\sqrt{3}} = 1.732

\longrightarrow\sf{-(1.732-2)}

\longrightarrow\sf{-(-0.268)}

\large\boxed{\boxed{\longrightarrow\sf{0.268}}}

Similar questions