Math, asked by shiksha8764, 2 months ago

plz answer this question ​

Attachments:

Answers

Answered by Anonymous
2

Given:

\dfrac{1}{\sqrt{3}-\sqrt{2}}

Here, \sqrt{2} = 1.414  \: and  \: \sqrt{3} = 1.732

We  \: have  \: to \:  find,  \: the \:  value  \: of  \: \dfrac{1}{\sqrt{3}-\sqrt{2}}

Solution:

∴ \dfrac{1}{\sqrt{3}-\sqrt{2}}

Rationalising numerator and denominator, we get

=\dfrac{1}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}

Using the algebraic identity:

(a + b)(a - b) = a^{2} -b^{2}

=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}^2-\sqrt{2}^2}

=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}

=\dfrac{\sqrt{3}+\sqrt{2}}{1}

= \sqrt{3}  + \sqrt{2}

Put \:  \sqrt{2}  \: = 1.414  \: and \:  \sqrt{3}  = 1.732,

we get,

= 1.732 + 1.414

= 3.146

∴ \dfrac{1}{\sqrt{3}-\sqrt{2}} = 3.146

Thus, \:  the \:  value  \: of \:  \dfrac{1}{\sqrt{3}-\sqrt{2}}  \: is \:  equal  \: to  \: 3.146.

Similar questions