Physics, asked by vaishnavi808546, 1 month ago

plz answer this question​

Attachments:

Answers

Answered by VεnusVεronίcα
22

☀️ Given that, two metallic wires A and B (of the same material) are connected in parallel.

 \:

☀️ Wire A has length l and radius r.

☀️ Wire B has length 3l and radius 3r.

 \:

☀️ We should find the ratio of the total resistance in parallel combination to the resistance of wire A.

 \:

\qquad_______________

 \:

☀️ Finding the resistance of each wire :

 \:

☀️ For wire A :

  • Length = l
  • Radius = r

\sf\qquad:\implies~ R_{(A)}=Wire~A

\sf\qquad:\implies~{R_{(A)}=\rho}\dfrac{l}{A}

\sf\qquad:\implies~{ R_{(A)}=\rho}\dfrac{l}{\pi r^2}

  \:

☀️ For wire B :

  • Length = 3l
  • Breadth = 3r

\sf\qquad:\implies~R_{(B)}=Wire~ B

\sf\qquad:\implies~R_{(B)}=\rho\dfrac{l}{A}

\sf\qquad:\implies~R_{(B)}=\rho\dfrac{l}{\pi r^2}

\sf\qquad:\implies~R_{(B)}=\rho\dfrac{3l}{\pi (3r)^2}

\sf\qquad:\implies~R_{(B)}=\rho\dfrac{3l}{\pi 9r^2}

\sf\qquad:\implies~R_{(B)}=\rho\dfrac{l}{3\pi r^2}

 \:

☀️ Finding the resistance of the parallel combination :

\sf \qquad:\implies~ \dfrac{1}{R_{(P)}}=\dfrac{1}{R_{(A)}}+\dfrac{1}{R_{(B)}}

\sf\qquad:\implies{\dfrac{1}{ ~R_{(P)}}=}\dfrac{\sf 1}{\bigg(\dfrac{\sf{\rho }l}{\pi r^2}\bigg)}+\dfrac{\sf 1}{\bigg(\dfrac{{\sf{\rho}} l}{3\pi r^2}\bigg)}

\qquad:\implies~ \sf{\dfrac{1}{R_{(P)}}=\dfrac{\pi r^2}{\rho l}+\dfrac{3\pi r^2}{\rho l}}

\qquad:\implies~ \sf\dfrac{1}{R_{(P)}}=\dfrac{4\pi r^2}{\rho l}

\qquad:\implies~\sf R_{(P)}=\rho\dfrac{l}{4\pi r^2}

 \:

☀️ Finally, finding the ratio of the total resistance in parallel combination to the resistance of wire A :

\qquad\sf :\implies~ R_{(P)}:R_{(A)}

\qquad\sf:\implies~\dfrac{R_{(P)}}{R_{(A)}}=\dfrac{\bigg(\dfrac{\rho l}{4\pi r^2} \bigg)}{\bigg(\dfrac{\rho l}{\pi r^2}\bigg)}

\sf\qquad :\implies~\dfrac{\rho l}{4\pi r^2}\times\dfrac{\pi r^2}{\rho l}

\sf{\qquad:\implies ~\sf \dfrac{R_{(P)}}{R_{(A)}}=\dfrac{1}{4}}

 \:

☀️ Therefore, the ratio of the total resistance in parallel combination to the resistance of wire A is 1 : 4.

Answered by singhsuhana
1

Answer:

Please mark me as the brainliest answer to make me virtuoso

Similar questions