Math, asked by hameedpgr, 1 month ago



plz answer this question ​

Attachments:

Answers

Answered by ripinpeace
25

Step-by-step explanation:

★Given -

  • { \rm{  \bf{{tan}^{2}  \theta +  {tan}^{4} \theta} }}

★To prove -

  •  \rm{ \bf{ {sec}^{4}  \theta -  {sec}^{2}  \theta}}

★Concept -

  • Here, we'll manipulate the identity sec²∅ = 1 + tan²∅ to get the desired answer. Let's do it!

★Solution -

L.H.S

 \longmapsto{ \rm{  \bf{{tan}^{2}  \theta +  {tan}^{4} \theta} }}

 \longmapsto{ \rm{  \bf{{tan}^{2}  \theta(1 +   {tan}^{2} \theta}) }}

 \longmapsto{ \rm{  \bf{{tan}^{2}  \theta(  {sec}^{2} \theta}) }}

sec²∅ = 1 + tan²∅

 \longmapsto{ \rm{  \bf{({sec}^{2}  \theta - 1)(  {sec}^{2} \theta}) }}

∵ sec²∅ = 1 + tan²∅

=> sec²∅ - 1 = tan²∅

 \longmapsto{ \rm{  \pink{ \bf{{sec}^{4}  \theta - sec}^{2} \theta }}  \pink=  \pink{\rm R.H.S}}

More to know -

  •  \rm{ \bf{sin}^{2}  \theta +  {cos}^{2}  \theta = 1}
  •  \rm{ \bf  {sec}^{2}  \theta = 1 +  {tan}^{2}  \theta}
  •  \rm{ \bf  {cosec}^{2}  \theta = 1 +  {cot}^{2}  \theta}
Answered by Anonymous
47

Step-by-step explanation:

 \longmapsto{ \rm{  \bf{({tan}^{2}  \theta - 1)(  {sec}^{2} \theta}) }}

 \longmapsto{ \rm{  \bf{({sec}^{2}  \theta - 1)(  {sec}^{2} \theta}) }}

 \longmapsto{ \rm{  \pink{ \bf{{sec}^{4}  \theta - sec}^{2} \theta }}  \pink=  \pink{\rm R.H.S}}

Similar questions