Math, asked by ali6166, 1 year ago

plz answer this question

Attachments:

Answers

Answered by VemugantiRahul
1
Hope it helps you
:-)
Attachments:

ali6166: thanks
VemugantiRahul: my pleasure
Answered by Anonymous
0

[tex]\lim_{x \to \infty} (x-\sqrt{x^{2}+x}) =  \lim_{x \to \infty} (x-\sqrt{x^{2}+x})\frac{x+\sqrt{x^{2}+x} }{x+\sqrt{x^{2}+x} }  = \lim_{x \to \infty} \frac{x^{2}-(x^{2}+x)}{x+\sqrt{ x^{2}+x}}[/tex]


\lim_{x \to \infty} \frac{-x}{x\sqrt{1+\frac{1}{x} }+x }  = \lim_{x \to \infty} \frac{-x}{x(\sqrt{1+\frac{1}{x} }+1) }  = \lim_{x \to \infty} \frac{-1}{\sqrt{1+\frac{1}{x} } +1}

when x tends to infinity,1/x tends to zero.

so limit is  ,,,,,,,,,

-1/(√1+1)

=-1/2

Similar questions