Math, asked by WonderfulSoul, 1 month ago

plz answer this question Don't spam​

Attachments:

Answers

Answered by whiteshark86
0

Step-by-step explanation:

unshaded area = ½x 16x 12

=8x12=96cm²

ABC area= ½x 52 x48

=52x24

=1248cm²

Shaded area= 1248-96

=1152cm²

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
38

Information provided with us:

  • Length of BD is 16cm
  • Length of AD is 12cm
  • Length of AC is 52cm

What we have to calculate:

  • We have to calculate the area of the shaded region of that given figure of triangle

Using Formulas:

Pythagoras theorem,

  • \large \boxed{ \sf{(Hypotenuse) {}^{2} =  (base) {}^{2}   + (height) {}^{2} }}

Area of triangle,

  •  \boxed{ \large {\sf{ \dfrac{1}{2}  \times base \:  \times  \: height}}}

Heron's formula,

  • \boxed{ \large {\sf{ \sqrt{s(s - a)(s - b)(s - c)} }}}

Where,

  • s is semi perimeter
  • a, b, and c are the sides of triangle

Semi perimeter of triangle,

  • \boxed{ \large {\sf{ s  \: =  \: \frac{a + b + c}{2}   }}}

Performing Calculations:

______________

 \underline{  \underline{{\bf{Triangle \:  ABD:- \: }}}}

  • Here we have to find out the hypotenuse of the triangle ABD so we would be using pythagoras theorem.

Here we have,

  • Base (AD) is 16cm
  • height (BD) is 12cm

Substituting the values in pythagoras theorem,

 \longrightarrow \: \sf{AB {}^{2} \:  =  \: (16) {}^{2} + (12) {}^{2}   }

  \longrightarrow \: \sf{AB {}^{2} \:  =  \: (16 \times 16)+ (12 \times 12)  }

  \longrightarrow \: \sf{AB {}^{2} \:  =  \: (256)+ (144)  }

\longrightarrow \: \sf{AB {}^{2} \:  =  \: 400  }

  \longrightarrow \: \sf{AB \:  =  \:  \sqrt{400}  }

  \longrightarrow \:    \boxed{\purple{\bf{AB \:  =  \:  20cm}}}

Finding out the area of triangle,

\longrightarrow \:  \sf{Area _{(triangle)} \:  =  \:  \dfrac{1}{2} (16)(12)}

 \longrightarrow \:  \sf{Area _{(triangle)} \:  =  \:  \dfrac{1}{2}  \times 16 \times 12}

 \longrightarrow \:  \sf{Area _{(triangle)} \:  =  \:  \dfrac{1}{ \cancel2}  \times  \cancel16 \times 12}

 \longrightarrow \:  \sf{Area _{(triangle)} \:  =  \:   8 \times  12}

\longrightarrow \:    \boxed{\purple{\bf{Area _{(triangle)} \:  =  \:   96}}}

  •  \therefore \underline{\bf{Area  \: of \: \triangle \: ABD \: is \: 96cm^{2}}}

_____________

\underline{  \underline{  \sf{\bf{Triangle \:  ABC:- \: }}}}

Finding out semi perimeter,

  • Here we are calculating the semi perimeter (s) by substituting the values of sides a, b, and c in the formula of semi perimeter.

:  \longmapsto \: \sf{s_{(triangle)} \:  =  \:  \dfrac{20 + 48 + 52}{2} }

:  \longmapsto \: \sf{s_{(triangle)} \:  =  \:  \dfrac{20 + 100 }{2} }

:  \longmapsto \: \sf{s_{(triangle)} \:  =  \:  \dfrac{120}{2} }

:  \longmapsto \: \sf{s_{(triangle)} \:  =  \:   \cancel\dfrac{120}{2} }

:  \longmapsto \:  \boxed{ \purple{\bf{s_{(triangle)} \:  =  \:60 }}}

 \therefore \underline{\bf{Semi perimeter \: of \: \triangle \: ABC \: is \: 60cm}}

Finding out area by using heron's formula,

  • Substituting the values of s, a, b, and c in the heron's formula inorder to get its area.

: \implies \:  \tt{ \sqrt{60(60 - 20)(60 - 48)(60 - 52)} }

: \implies \:  \tt{ \sqrt{60(40)(12)(8)} }

: \implies \:  \tt{ \sqrt{60 \times (40) \times (12) \times (8)} }

: \implies \:  \tt{ \sqrt{60 \times 40\times 12 \times 8} }

: \implies \:  \tt{ \sqrt{2400\times 12 \times 8} }

: \implies \:  \tt{ \sqrt{2400 \: \times  \: 96} }

: \implies \:  \tt{ \sqrt{230400} }

: \implies \:    \underline{\red{\boxed{ \tt{ 480} }}}

 \therefore \underline{\bf{Area \: of \: \triangle \: ABC \: is \: 480}}

_________

\underline{  \underline{  \sf{\bf{Shaded \: region:- \: }}}}

  • It would be calculated by subtracting the both the areas of ∆ABD and ∆ABC

Here we have,

  • Area of ∆ABD = 96cm²
  • Area of ∆ABC = 480cm²

:  \leadsto \:   \bf{Shaded  \: region \:  area \:  =  \: 480 - 96}

:  \leadsto \:      \large{\pink{\boxed{\bf{Shaded  \: region \:  area \:  =  \: 384}}}}

\underline{ \tt{Henceforth,  \: area \:  of shaded  \: region \:  is  \: 384cm {}^{2} </p><p>}}

Similar questions