Math, asked by nnagababu726pb8ss4, 10 months ago

plz answer this question friends ​

Attachments:

Answers

Answered by tahseen619
3

Hey Mate your answer is 1 .

Step-by-step explanation:

 \frac{  { \sin }^{2}  \frac{\pi}{18}   +  {sin}^{2}  \frac{\pi}{9} +  {sin}^{2}   \frac{7\pi}{18}  +  {sin}^{2}  \frac{4\pi}{9} }{  { \cos}^{2}  \frac{\pi}{18}   +  {cos}^{2}  \frac{\pi}{9} +  {cos}^{2}   \frac{7\pi}{18}  +  {cos}^{2}  \frac{4\pi}{9}  }  \\  \\  \frac{  { \sin }^{2}  \frac{180}{18}   +  {sin}^{2}  \frac{180}{9} +  {sin}^{2}   \frac{(7 \times 180)}{18}  +  {sin}^{2}  \frac{(4 \times 180)}{9} }{  { \cos}^{2}  \frac{180}{18}   +  {cos}^{2}  \frac{180}{9} +  {cos}^{2}   \frac{(7 \times 180)}{18}  +  {cos}^{2}  \frac{(4 \times 180)}{9}  }  \\  \\  \frac{  { \sin }^{2}  10 +  {sin}^{2}  20 +  {sin}^{2}   70  +  {sin}^{2}  80}{  { \cos}^{2} 10  +  {cos}^{2}  20+  {cos}^{2}   70+  {cos}^{2}  80}  \\ \\  \frac{  { \sin }^{2}  (90 - 80) +  {sin}^{2}  ( 90  - 70) +  {sin}^{2}   70  +  {sin}^{2}  80}{  { \cos}^{2} (90 - 80) +  {cos}^{2}  (90 - 70)+  {cos}^{2}   70+  {cos}^{2}  80}  \\  \\ \frac{  { cos}^{2}  80  +  {sin}^{2}  80 +  {sin}^{2}   70  +  {cos}^{2}  70}{  { sin}^{2} 80  +  {cos}^{2}  80+  {cos}^{2}   70+  {cos}^{2}  70}  \\  \frac{1 + 1}{1 + 1}  \\  \frac{2}{2}  \\ 1

Using Identity

sin(90 - ∅) = cos∅

cos(90 - ∅) = sin∅

sin²∅ + cos²∅ = 1

Similar questions